Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemics ; 46: 100743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290265

ABSTRACT

Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus' transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/epidemiology , Pandemics , Reproducibility of Results , Communicable Diseases/epidemiology
2.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36851664

ABSTRACT

Japanese encephalitis virus (JEV) is an arboviral, encephalitogenic, zoonotic flavivirus characterized by its complex epidemiology whose transmission cycle involves reservoir and amplifying hosts, competent vector species and optimal environmental conditions. Although typically endemic in Asia and parts of the Pacific Islands, unprecedented outbreaks in both humans and domestic pigs in southeastern Australia emphasize the virus' expanding geographical range. To estimate areas at highest risk of JEV transmission in Australia, ecological niche models of vectors and waterbirds, a sample of piggery coordinates and feral pig population density models were combined using mathematical and geospatial mapping techniques. These results highlight that both coastal and inland regions across the continent are estimated to have varying risks of enzootic and/or epidemic JEV transmission. We recommend increased surveillance of waterbirds, feral pigs and mosquito populations in areas where domestic pigs and human populations are present.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Epidemics , Humans , Animals , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Mosquito Vectors , Australia/epidemiology
3.
Pathogens ; 11(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36558810

ABSTRACT

Although influenza A virus is endemic in wild waterfowl, domestic poultry, swine, humans, bats, cetaceans, dogs, and horses, there is a paucity of data on the potential role of camels in zoonotic transmission of the virus. To estimate the seroprevalence of the influenza A virus in camel populations, four local government areas of Nigeria that share an international border with the Niger Republic were selected. Blood samples from 184 one-hump camels (dromedaries) were collected and tested for influenza IgG antigen by ELISA. Each camel's demographic variable, such as age, gender, location, production system, and usage, was recorded. The overall seroprevalence rate of influenza virus IgG in this study was 10.33% (95%CI: 6.33-15.66%). In the bivariate model, there was no significant difference in gender, age, site location and production system, except for usage. There was a significantly lower seroprevalence rate among camels used for labour (odds ratio (OR) = 0.34, 95% CI: 0.10-0.97) than those used for meat consumption; however, not after adjusting for other variables in the model. Increase surveillance through early detection, prediction, and risk assessment of pathogens in animal reservoirs and environmental contamination as One Health strategies to reduce potential human spillover is recommended. Molecular epidemiology studies could better elucidate the role of camels in the dynamics of disease transmission pathways.

4.
Trop Med Infect Dis ; 7(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36548648

ABSTRACT

Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked interest into epidemiological factors surrounding the virus' novel emergence in this region. Here, the geographic distribution of mosquito species known to be competent JEV vectors in the country was estimated by combining known mosquito occurrences and ecological drivers of distribution to reveal insights into communities at highest risk of infectious disease transmission. Species distribution models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along Australia's eastern and northern coastline, while Culex quinquefasciatus presence was estimated to be most likely near inland regions of southern Australia as well as coastal regions of Western Australia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological niche models emphasise the need for further entomological surveillance and JEV research within Australia.

SELECTION OF CITATIONS
SEARCH DETAIL
...