Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 37(17): 4321-4327, 1998 Aug 24.
Article in English | MEDLINE | ID: mdl-11670568

ABSTRACT

The rate of oxidation of ClO(2)(-) by HOBr is first-order in each reactant and is general-acid-assisted in the presence of phosphate or carbonate buffers. The products are ClO(2) and ClO(3)(-), where the relative yield depends on the concentration ratio of ClO(2)(-)/OH(-). The kinetic dependence indicates the presence of a steady-state intermediate, HOBrOClO(-) (or HOBrClO(2)(-)), that undergoes general-acid-assisted reactions to generate a metastable intermediate, BrOClO (or BrClO(2)). This intermediate reacts very rapidly by two competing pathways: in one path ClO(2)(-) reacts to form 2ClO(2) and Br(-), and in the other path OH(-) (or H(2)O) reacts to form ClO(3)(-) and Br(-). Competition between these pathways determines the yield of ClO(2) but does not affect the rate of loss of HOBr. The reactions are followed by the formation of ClO(2) in the presence of excess ClO(2)(-). The rate expression for the loss of HOBr is k(1)[ClO(2)(-)][HOBr] summation operator(k(HA)[HA])/(k(-)(1) + summation operator(k(HA)[HA])), where k(1) (for the formation of the intermediate) is 97 M(-)(1) s(-)(1) and k(HA)/k(-)(1) (M(-)(1)) values, which depend on the acid (HA) strength, are 3.1 x 10(5) for H(3)O(+), 8.3 for H(2)PO(4)(-), and 0.064 for HCO(3)(-) (25.0 degrees C, &mgr; = 1.0 M). Reactions between HOBr and ClO(2)(-) are much faster than those between HOCl and ClO(2)(-).

SELECTION OF CITATIONS
SEARCH DETAIL
...