Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 96: 103996, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36228992

ABSTRACT

Chronic exposure to PM2.5 contributes to the pathogenesis of numerous disorders, although the underlying mechanisms remain unknown. The study investigated whether exposure of human monocytes to PM2.5 is associated with alterations in miRNAs. Monocytes were exposed in vitro to PM2.5 collected during winter and summer, followed by miRNA isolation from monocytes. Additionally, in 140 persons chronically exposed to air pollution, some miRNA patterns were isolated from serum seasonally. Between-season differences in chemical PM2.5 composition were observed. Some miRNAs were expressed both in monocytes and in human serum. MiR-34c-5p and miR-223-5p expression was more pronounced in winter. Bioinformatics analyses showed that selected miRNAs were involved in the regulation of several pathways. The expression of the same miRNA species in monocytes and serum suggests that these cells are involved in the production of miRNAs implicated in the development of disorders mediated by inflammation, oxidative stress, proliferation, and apoptosis after exposure to PM2.5.


Subject(s)
Air Pollutants , Air Pollution , MicroRNAs , Humans , Particulate Matter/toxicity , MicroRNAs/genetics , Monocytes , Air Pollution/adverse effects , Apoptosis , Air Pollutants/toxicity
2.
Environ Pollut ; 241: 406-411, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29859502

ABSTRACT

This study presents the air pollution findings of the submicron (PM1) and fine (PM2.5) particulate matter. The submicron particles are entirely absorbed by the human body and they cause the greatest health risk. For the PM2.5 concentration, there are yearly and/or daily limit values regulations by the European Union (EU) and World Health Organization (WHO). There are no such regulations for PM1 but for health risk reason the knowledge of its concentration is important. This paper presents the seasonal concentration contribution of PM1 and PM2.5, their chemical composition and assessed three basic sources. Daily samples of both fractions were collected from 2nd July 2016 to 27th February 2017 in Krakow, Poland. Apart from PM1 and PM2.5 the concentration of 16 elements, 8 ions and BC for each samples were measured. Based on these chemical species the positive matrix factorization (PMF) receptor modeling was used for the determination of three main sources contribution to the PM1 and PM2.5 concentrations. Daily average concentrations of PM2.5 were 12 µg/m3 in summer and 60 µg/m3 in winter. For PM1 it was 6.9 µg/m3 in summer and 17.3 µg/m3 in winter. These data show a significant difference in percentage contribution of PM1 in PM2.5 in summer (58%) and in winter (29%). For the combustion source, the concentrations calculated from PMF modeling in winter were 4.8 µg/m3 for PM1 and 31 µg/m3 for PM2.5. In summer, the concentrations were smaller than 1 µg/m3 for both fractions. Secondary aerosols' concentration for PM1 was 3.4 µg/m3 in summer and 11 µg/m3 in winter - for PM2.5 these were 7.1 µg/m3 and 17 µg/m3 respectively. The third source - soil, industry and traffic together, had small seasonal variation: for PM1 it was from 1.4 to 1.8 µg/m3 and for PM2.5 from 4.7 to 7.9 µg/m3.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Aerosols/analysis , Air Pollution/statistics & numerical data , Humans , Industry , Ions/analysis , Particle Size , Poland , Seasons
3.
Chemosphere ; 187: 430-439, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28865356

ABSTRACT

Submicron particulate matter containing particles with an aerodynamic diameter ≤1 µm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 µm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 µg/m3, respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 µg/m3, respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow.


Subject(s)
Air Pollutants/analysis , Particulate Matter/chemistry , Environmental Monitoring/methods , Inhalation Exposure/adverse effects , Metals/analysis , Particle Size , Particulate Matter/analysis , Particulate Matter/toxicity , Poland , Seasons , Spectrometry, X-Ray Emission
4.
Air Qual Atmos Health ; 10(1): 47-52, 2017.
Article in English | MEDLINE | ID: mdl-28111596

ABSTRACT

The monitored level of pollution remains high in Krakow, Poland. Alerts regarding increased levels of pollution, which advise asthmatics, the elderly, and children to limit their exposure to open air, continue to be issued on numerous days. In this work, seasonal variations in PM2.5 (particulate matter containing particles with aerodynamic diameter no higher than 2.5 µm) concentrations are shown. An increasing trend is reported, which is enhanced during the colder seasons. The mean PM2.5 concentrations in Krakow exceeded the target value of 25 µg/m3 specified for 2015 in the spring, autumn, and winter seasons. For this reason, particulate matter pollution is of special concern. Elemental concentrations as well as the presence of black carbon (BC) and black smoke (BS) in PM2.5 samples were determined. Seasonal variations of Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, and Pb concentrations were observed whereas V, Cr, Ni, BC, and BS concentrations did not significantly change with the time of year. Seven factors were identified by the positive matrix factorization (PMF) technique, and one was non-identified. They were attributed to the following sources of pollution: steel industry, traffic (diesel exhaust), traffic (gasoline exhaust, brake wear), road dust, construction dust, combustion (biomass, coal), and non-ferrous metallurgical industry. The last, non-identified source, could be attributed to secondary aerosols. It is worth to mention that combustion shows significant seasonal variations with a high impact in winter. The reported results of the completed studies may significantly aid in solving air quality issues in the city by highlighting major sources of air pollution.

5.
Talanta ; 93: 186-92, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22483897

ABSTRACT

Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented.


Subject(s)
Software , Spectrometry, X-Ray Emission/instrumentation , Particulate Matter/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...