Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Mol Diagn ; 22(10): 1225-1237, 2020 10.
Article in English | MEDLINE | ID: mdl-32745613

ABSTRACT

Increased access to and improved sensitivities of methods for diagnosing Mycobacterium tuberculosis infection and detecting rifampicin and isoniazid resistance are needed. Herein, the performance of the new cobas MTB assay for use on cobas 6800/8800 Systems (Roche) was assessed and compared with two other commercial assays: RealTime MTB (Abbott), and Xpert MTB/RIF (Cepheid). Molecular PCR-based assays were conducted on sputum specimens from individuals with presumptive and confirmed tuberculosis (n = 294) from two clinical facilities in South Africa between December 2016 and October 2017. Liquid mycobacterial culture was the reference. Test sensitivities were 94.7% (95% CI, 88%-98%), 92.6% (95% CI, 85%-97%), and 91.6% (95% CI, 84%-96%) for cobas MTB, RealTime MTB, and Xpert MTB/RIF assays, respectively. cobas MTB sensitivity was unaffected by HIV coinfection (95.7%; 95% CI, 88%-99%; n = 176) and sediment testing (94.7%; 95% CI, 88%-98%). Sensitivities were 81.8% (95% CI, 60%-95%), 72.7% (95% CI, 50%-89%), and 72.7% (95% CI, 50%-89%) among smear-negative, culture-positive individuals (n = 221) for cobas MTB, RealTime MTB, and Xpert MTB/RIF assays, respectively. cobas MTB specificity was 95.7% (95% CI, 89%-99%) and 99% (95% CI, 94%-100%) among HIV coinfected and uninfected individuals, respectively. The cobas 6800/8800 system is already implemented in South Africa for high-throughput HIV viral load testing, making it suitable for integrated HIV/tuberculosis diagnostics.


Subject(s)
Biological Assay , Cost of Illness , HIV Infections/complications , Molecular Diagnostic Techniques , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Adolescent , Adult , Aged , Cohort Studies , Female , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Male , Middle Aged , Mycobacterium tuberculosis/drug effects , Specimen Handling , Tuberculosis, Pulmonary/drug therapy , Young Adult
2.
J Microbiol Methods ; 172: 105882, 2020 05.
Article in English | MEDLINE | ID: mdl-32119956

ABSTRACT

BACKGROUND: The cobas® omni Utility Channel enables users to integrate lab-developed tests (LDTs) on the cobas® 6800 System to perform molecular diagnostics with high-throughput capacity and full automation. At present, there are no CE- or FDA-approved tests for stool pathogens on this system. To assess the performance of stool as a matrix, we evaluated the analytical and clinical performance of an LDT for detection of Clostridioides difficile (C. difficile) toxin B using the Utility Channel (C.diff_UTC). METHODS: A 10% stool suspension prepared from liquid stool samples diluted in phosphate buffered saline was used for analysis. Limit of detection (LoD) was determined in six dilutions with 126 replicates/dilution. Clinical evaluation was performed using 514 predetermined patient stool samples from two study sites in Germany. The C.diff_UTC was compared with LC 480 amplification and an LDT or the R-BioPharm C. difficile assay. Discrepant results were further analyzed using the GeneXpert C. difficile assay. RESULTS: Limit of detection was 23.48 cfu/mL (95% Confidence Interval [CI]: 19.14-31.01) with inter-run variation of <2 cycle thresholds at 3 × and 10 × LoD. No cross-reactivity was observed with a panel of fecal organisms and pathogens. Bioinformatic analysis showed coverage of the major C. difficile toxinotypes by the primer/probe set. Clinical evaluation revealed sensitivity of 96.7% (95% CI: 88.7-99.6) and specificity of 99.3% (95% CI: 98.0-99.9) compared with the reference method; inhibition rate was 3.5% (18/514). CONCLUSION: Using a predesigned primer/probe set, the C.diff_UTC assay features analytical performance and clinical sensitivity and specificity comparable to currently available nucleic acid amplification tests (NAATs) and is suitable for high-throughput testing. This was a proof-of-concept study, indicating the cobas Utility Channel could likely be adapted for other clinically relevant stool pathogens in outbreak scenarios.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Toxins/isolation & purification , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Feces/chemistry , Reverse Transcriptase Polymerase Chain Reaction/methods , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridium Infections/microbiology , Germany , Humans , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...