Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 73(10): 8308-19, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10482581

ABSTRACT

In a previous study we showed that multiple deletions of the adenoviral regulatory E1/E3/E4 or E1/E3/E2A genes did not influence the in vivo persistence of the viral genome or affect the antiviral host immune response (Lusky et al., J. Virol. 72:2022-2032, 1998). In this study, the influence of the adenoviral E4 region on the strength and persistence of transgene expression was evaluated by using as a model system the human cystic fibrosis transmembrane conductance regulator (CFTR) cDNA transcribed from the cytomegalovirus (CMV) promoter. We show that the viral E4 region is indispensable for persistent expression from the CMV promoter in vitro and in vivo, with, however, a tissue-specific modulation of E4 function(s). In the liver, E4 open reading frame 3 (ORF3) was necessary and sufficient to establish and maintain CFTR expression. In addition, the E4 ORF3-dependent activation of transgene expression was enhanced in the presence of either E4 ORF4 or E4 ORF6 and ORF6/7. In the lung, establishment of transgene expression was independent of the E4 gene products but maintenance of stable transgene expression required E4 ORF3 together with either E4 ORF4 or E4 ORF6 and ORF6/7. Nuclear run-on experiments showed that initiation of transcription from the CMV promoter was severely reduced in the absence of E4 functions but could be partially restored in the presence of either ORF3 and ORF4 or ORFs 1 through 4. These results imply a direct involvement of some of the E4-encoded proteins in the transcriptional regulation of heterologous transgenes. We also report that C57BL/6 mice are immunologically weakly responsive to the human CFTR protein. This observation implies that such mice may constitute attractive hosts for the in vivo evaluation of vectors for cystic fibrosis gene therapy.


Subject(s)
Adenoviridae , Adenovirus E4 Proteins/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Transfer Techniques , Genetic Vectors , Animals , Genetic Therapy , Humans , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Transcription, Genetic
2.
Gene Ther ; 3(11): 1010-7, 1996 Nov.
Article in English | MEDLINE | ID: mdl-9044741

ABSTRACT

Cationic amphiphiles have been shown to mediate gene transfer to eukaryotic cells, although the nature and fate of the lipid-DNA complexes is still a matter of debate. Negative staining transmission electron microscopy (TEM) of the complexes in physiological medium, as well as thin-section TEM of transfected cells has been used to visualize the particles and the possible pathways leading to transgene expression. Lipopolyamines form a network of tubular micelles into which plasmid DNA is intertwined and condensed; the cationic particles contain hundreds of plasmid molecules and are heterogeneous with respect to size (0.1-0.5 microgram) and shape. Adherent cells (293M, 3T3, MRC5, primary leptomeningeal cells) take them up readily within minutes by spontaneous endocytosis. Among suspension cells, lymphocytes only incidentally show cytoplasmic inclusions and monocytes degrade the particles by phagocytosis. The marked decrease in transfection efficiency generally observed between adherent and nonadherent cells is thus due to reduce cell binding. This suggests that cationic particles bind to membrane components responsible for Ca2+-mediated cell anchoring to the extracellular matrix. Cation/anion-mediated endocytosis leads to endosomes that are entirely filled with the particles. Consequently, two escape mechanisms may operate: disruption of the lamellar envelope in close contact with tubular micelles, and endosome buffering by the lipopolyamine in response to proton entry, leading to osmotic swelling and endosome rupture. Even for moderately transfected MRC5 cells, 10(2)-10(3) particles are found either free or in cytoplasmic vacuoles 24 h after transfection, highlighting a very inefficient nuclear translocation process. Such high numbers are also the clue to the small concentration window between transfection and cytotoxicity that is often observed with nonviral vectors. Nuclear particle inclusions are sometimes seen, yet it is unclear whether plasmid uncoating (before expression) takes place by anion exchange in the cytoplasm or in the nucleus. The still lower efficiency of free plasmid translocation to the nucleus suggests an active role for the cationic lipid during this step. Although the last stages of the transfection mechanism remain unclear, the present work shows that the major barrier which hampers in vitro gene delivery with cationic vectors is nuclear translocation (and cell entry for nonadherent cells), providing precise targets for the design of improved nonviral vectors.


Subject(s)
Gene Transfer Techniques , Microscopy, Electron , Plasmids , Polyamines , 3T3 Cells , Animals , Cell Nucleus , Cells, Cultured , Endocytosis , Humans , Mice , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL