ABSTRACT
Crithidia mellificae, a monoxenous trypanosomatid considered restricted to insects, was recently reported to infect a bat. Herein, C. mellificae has been demonstrated to have a wider range of vertebrate hosts and distribution in Brazilian biomes than once thought. Parasites isolated from haemocultures were characterized using V7V8 SSU rDNA and glyceraldehyde 3-phosphate dehydrogenase genes. Coatis (Nasua nasua) in the Cerrado; marmosets (Callithrix sp.) and bats (Carollia perspicillata, Myotis lavali, M. izecksohni, Artibeus lituratus) in the Atlantic Forest; crab-eating foxes (Cerdocyon thous) and ocelot (Leopardus pardalis) in the Pantanal biomes were infected by trypanosomatids that displayed choanomastigote forms in haemoculture in Giemsa-stained slide smears. Molecular characterization and phylogenetic inference confirmed the infection of C. mellificae in these animals. Moreover, slight differences in C. mellificae sequences were observed. Crithidia mellificae growth curves were counted at 27°C, 36°C and 37°C, and the morphotypes were able to grow and survive for up to 16 days. Serological titers for C. mellificae were observed in nonhuman primates, demonstrating that this parasite is able to induce a humoral immune response in an infected mammal. These results showed that host specificity in trypanosomatids is complex and far from understood.
ABSTRACT
The Bartonella species are zoonotic agents that infect mammals and are transmitted by arthropod vectors. Approximately 18 distinct genotypes cause diseases in humans, and may be spread by both domestic and wild animals. In Brazil, Bartonella genotypes have been identified in several species of wild mammals, and in the present study, we analyzed samples from non-human primates (marmosets), marsupials, rodents, and bats, and compared them with the genotypes described in mammals from Brazil, to examine the distribution of Bartonella genotypes in two impacted areas of Rio de Janeiro state, in southeastern Brazil. We used polymerase chain reaction (PCR) methods to detect the Bartonella DNA using partial sequences of the gltA, ftsZ, and groEL genes. We generated Bayesian inference and maximum likelihood trees to characterize the positive PCR samples and infer the phylogenetic relationships of the genotypes. A total of 276 animals were captured, including 110 bats, 91 rodents, 38 marsupials, and 37 marmosets. The DNA of Bartonella was amplified from tissue samples collected from 12 (4.34%) of the animals, including eight rodents - Akodon cursor (5/44) and Nectomys squamipes (3/27) - and four bats, Artibeus lituratus (3/58) and Carollia perspicillata (1/15). We identified Bartonella genotypes closely related to those described in previous studies, as well as new genotypes in both the rodent and the bat samples. Considering the high diversity of the Bartonella genotypes and hosts identified in the present study, further research is needed to better understand the relationships between the different Bartonella genotypes and their vectors and host species. The presence of Bartonella in the wild rodents and bats from the study area indicates that the local human populations may be at risk of infection by Bartonella due to the spillover of these strains from the wild environment to domestic and peri-domestic environments.
ABSTRACT
INTRODUCTION: In Brazil, visceral leishmaniasis (VL) has spread to various regions. This study reports canine cases of VL in Barra Mansa, where human VL cases were recently reported. METHODS: Using the human index case, a canine survey was performed by dual-path platform immunochromatography and enzyme-linked immunosorbent assay. Seropositive animals were euthanized. Cultures were collected to detect Leishmania parasites. RESULTS: Serological tests detected 141 canine VL cases, and Leishmania chagasi were isolated from 82.2% animals. CONCLUSIONS: Leishmania chagasi is in circulation in Barra Mansa. This study broadens information on the parasite's distribution in the State of Rio de Janeiro.