Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145923

ABSTRACT

Rigid polyurethane foams were prepared by the one-step expandable foam method using casting molding followed by forming clay-based composites. Polyurethane/vermiculite foam composites (PU/VMT) were controlled based on adding the percentage of clay in the formulation. The effects of composite modifications were evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), and scanning electron microscopy (SEM/EDS) applied to the flame retardancy explored by the vertical burn test. The results indicated that adding clay controlled the particle size concerning polyurethane (PU) foams. However, they exhibited spherical structures with closed cells with relatively uniform distribution. XRD analysis showed the peaks defined at 2θ = 18° and 2θ = 73° relative to the crystallinity in formation and interaction of rigid segments were identified, as well as the influence of crystallinity reduction in composites. In the flame test, the flame retardant surface was successful in all composites, given the success of the dispersibility and planar orientation of the clay layers and the existence of an ideal content of vermiculite (VMT) incorporated in the foam matrix.

2.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806684

ABSTRACT

TiO2/Karaya composite was synthesized by the sol-gel method for the photoinactivation of pathogens. This is the first time that we have reported this composite for an antimicrobial approach. The structure, morphology, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-rays (EDS), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance, and the surface area was characterized by the BET method. The XRD and EDS results showed that the TiO2/Karaya composite was successfully stabilized by the crystal structure and pore diameter distribution, indicating a composite of mesoporous nature. Furthermore, antibacterial experiments showed that the TiO2/Karaya composite under light was able to photoinactivate bacteria. Therefore, the composite is a promising candidate for inhibiting the growth of bacteria.

3.
Environ Sci Pollut Res Int ; 28(19): 23995-24007, 2021 May.
Article in English | MEDLINE | ID: mdl-33405111

ABSTRACT

Herbicides are hazardous organic pollutants that contribute to the risk of environmental contamination. The aim of this work was to investigate the synergistic effect of silver (Ag) and gold (Au) bimetallic nanoparticles deposited on palygorskite (PAL) in the presence of TiO2 for photodegradation of bentazone (BTZ) herbicide under UV light. Ag and Au@Ag nanoparticles exhibited an average size below 75 nm and surface charge values less than - 30 mV. UV-Vis spectroscopy indicates the formation of core@shell bimetallic nanoparticles. XRD results showed the interactions between the NPs and the palygorskite structure. SEM images clearly illustrate the presence of small spherical particles distributed in the clay fibers. The control of the size and distribution of the nanoparticles played an important role in the properties of the composites. The degradation of the herbicide BTZ showed that nanoparticles, clay, and only TiO2 did not produce satisfactory results; however, when Ag-Pal and Au@Ag-Pal were in the presence of the TiO2, the degradation was efficient. The best photodegradative system was Au@Ag-Pal+TiO2, which was maintained after the third cycle. The bentazone photodegradation using Au@Ag-PAL+TiO2 exhibited toxicity against Artemia salina. Therefore, Au@Ag-PAL+TiO2 photocatalyst showed that the synergy of bimetallic nanoparticles deposited on clay for enhanced photodegradation activity of bentazone herbicide.


Subject(s)
Metal Nanoparticles , Silver , Gold , Magnesium Compounds , Photolysis , Silicon Compounds , Titanium
4.
Dalton Trans ; 49(45): 16394-16403, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32567613

ABSTRACT

Novel green photocatalysts based on ZnO in the presence of arabic gum (AGZ) or karaya gum (KGZ) were synthesized by a sol-gel method for photocatalytic performance. The materials were characterized by XRD, FTIR spectroscopy, SEM, nitrogen adsorption/desorption, and PL and diffuse reflectance spectroscopy. Photocatalytic test was performed using methylene blue (MB) dye as the target pollutant under visible light. The reuse of photocatalysts and Artemia saline bioassays were investigated. The ZnO nanoparticles showed a hexagonal structure and the values of the band gaps were 2.95 (AGZ) and 2.98 eV (KGZ). The PL results demonstrated emission bands at 440, 473 or 478 and 549 nm. The textural properties indicated the presence of typically mesoporous materials. The MB discoloration efficiency was 81.5% and 91.0% for AGZ and KGZ, respectively. The photocatalytic activity of AGZ and KGZ was maintained after the third run. The ˙OH radicals are the main species involved in the MB discoloration. The MB discoloration from the photocatalysts showed no toxicity; therefore, they are considered to be promising materials for the degradation of the dye in the photocatalytic process.

SELECTION OF CITATIONS
SEARCH DETAIL