Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 46(6): 1992-2001, 2007 Mar 19.
Article in English | MEDLINE | ID: mdl-17323916

ABSTRACT

Studies on synthesis, structures, and photophysics have been carried out for a series of luminescent copper(I) halide complexes with the chelating ligand, 1,2-bis[diphenylphosphino]benzene (dppb). The complexes studied are halogen-bridged dinuclear complexes, [Cu(mu-X)dppb]2 (X = I (1), Br (2), Cl (3)), and a mononuclear complex, CuI(dppb)(PPh3) (4). These complexes in the solid state exhibit intense blue-green photoluminescence with microsecond lifetimes (emission peaks, lambdamax = 492-533 nm; quantum yields, Phi = 0.6-0.8; and lifetimes, tau = 4.0-10.4 mus) at 298 K. In 2-methyltetrahydrofuran (2mTHF) solutions at 298 K, only 1 and 4 show weaker emission (Phi = 0.009) with shorter lifetimes (tau = 0.35 and 0.23 mus) and red-shifted spectra (lambdamax = 543 and 546 nm). The emission in the solid state originates from the (M + X)LCT excited state with a distorted-tetrahedral conformation, in which emissive excited states, 1(M + X)LCT and 3(M + X)LCT, are in equilibrium with an energy difference of approximately 2 kcal/mol. On the other hand, the complexes in the 2mTHF solutions emit from the MLCT excited state with an energetically favorable flattened conformation in the temperature range of 298-130 K. The flattened geometry with equilibrated 1MLCT and 3MLCT states has a nonradiative rate at least 2 orders of magnitude larger than that of the distorted-tetrahedral geometry, leading to a much smaller emission quantum yield (Phi = 0.009) at 298 K. Since the flattening motion is markedly suppressed below 130 K, the emission observed in 2mTHF below 130 K is considered to occur principally from the (M + X)LCT state with a distorted-tetrahedral geometry. To interpret the photophysics of 1 and 4 in both the solid and solution states, we have proposed the "2-conformations with 2-spin-states model (2C x 2S model)". The electroluminescence device using (1) as a green emissive dopant showed a moderate EL efficiency; luminous efficiency = 10.4 cd/A, power efficiency = 4.2 lm/W at 93 cd/m(2), and maximum external quantum efficiency = 4.8%.


Subject(s)
Benzene Derivatives/chemistry , Chelating Agents/chemistry , Copper/chemistry , Halogens/chemistry , Organophosphonates/chemistry , Crystallography, X-Ray , Luminescence , Magnetic Resonance Spectroscopy
2.
Dalton Trans ; (9): 1583-90, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15852106

ABSTRACT

This study reports substituent effects of iridium complexes with 1-phenylisoquinoline ligands. The emission spectra and phosphorescence quantum yields of the complexes differ from that of tris(1-phenylisoquinolinato-C2,N)iridium(iii)(Irpiq) depending on the substituents. The maximum emission peak, quantum yield and lifetime of those complexes ranged from 598-635 nm, 0.17-0.32 and 1.07-2.34 micros, respectively. This indicates the nature of the substituents has a significant influence on the kinetics of the excited-state decay. The substituents attached to phenyl ring have an influence on a stability of the HOMO. Furthermore, those substituents have effect on the contribution to a mixing between 3pi-pi* and (3)MLCT for the lowest excited states. Some of the complexes display the larger quantum yield than Irpiq, which has the quantum yield of 0.22. The organic light emitting diode (OLED) device based on tris [1-(4-fluoro-5-methylphenyl)isoquinolinato-C2,N]iridium(iii)(Ir4F5Mpiq) yielded high external quantum efficiency of 15.5% and a power efficiency of 12.4 lm W(-1) at a luminance of 218 cd m(-2). An emission color of the device was close to an NTSC specification with CIE chromaticity characteristics of (0.66, 0.34).

3.
J Am Chem Soc ; 125(42): 12971-9, 2003 Oct 22.
Article in English | MEDLINE | ID: mdl-14558846

ABSTRACT

Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).

SELECTION OF CITATIONS
SEARCH DETAIL
...