Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361957

ABSTRACT

The multimerization of ubiquitins at different positions of lysine residues to form heterotypic polyubiquitin chains is a post-translational modification that is essential for the precise regulation of protein functions and degradative fates in living cells. The understanding of structure-activity relationships underlying their diverse properties has been seriously impeded by difficulties in the preparation of a series of folded heterotypic chains appropriately functionalized with different chemical tags for the systematic evaluation of their multifaceted functions. Here, we report a chemical diversification of enzymatically assembled polyubiquitin chains that enables the facile preparation of folded heterotypic chains with different functionalities. By introducing an acyl hydrazide at the C terminus of the proximal ubiquitin, polyubiquitin chains were readily diversified from the same starting materials with a variety of molecules, ranging from small molecules to biopolymers, under nondenaturing conditions. This chemical diversification allowed the systematic study of the functional differences of K63/K48 heterotypic chains based on the position of the branch point during enzymatic deubiquitination and proteasomal proteolysis, thus demonstrating critical roles of the branch position in both the positive and negative control of ubiquitin-mediated reactions. The chemical diversification of the heterotypic chains provides a robust chemical platform to reframe the understanding of how the ubiquitin codes are regulated from the viewpoint of the branch structure for the precise control of cell functions, which has not been deciphered solely on the basis of the linkage types.

2.
J Am Chem Soc ; 145(21): 11690-11700, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37200097

ABSTRACT

Heterotypic polyubiquitins are an emerging class of polyubiquitins that have attracted interest because of their potential diversity of structures and physiological functions. There is an increasing demand for structure-defined synthesis of heterotypic chains to investigate the topological factors underlying the intracellular signals that are characteristically mediated by the heterotypic chain. However, the applicability of chemical and enzymatic polyubiquitin synthesis developed to date has been limited by laborious rounds of ligation and purification or by a lack of modularity of the chain structure with respect to the length and the branch position. Here, we established a one-pot, photocontrolled synthesis of structurally defined heterotypic polyubiquitin chains. We designed ubiquitin derivatives with a photolabile protecting group at a lysine residue used for polymerization. Repetitive cycles of linkage-specific enzymatic elongation and photoinduced deprotection of the protected ubiquitin units enabled stepwise addition of ubiquitins with appropriate functionalities to control the length and branching positions. The positional control of branching was achieved without isolation of intermediates, allowing one-pot synthesis of K63 triubiqutin chains and a K63/K48 heterotypic tetraubiquitin chain with defined branching positions. The present study provides a chemical platform for the efficient construction of long polyubiquitin chains with defined branch structures that will facilitate the understanding of the essential relationships between functions and structures of the heterotypic chain that have hitherto been overlooked.


Subject(s)
Polyubiquitin , Ubiquitin , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitins , Lysine/chemistry , Ubiquitination
3.
Chembiochem ; 21(3): 335-339, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31267643

ABSTRACT

Quantum-tunneling-based DNA sensing is a single-molecule technique that promises direct mapping of nucleobase modifications. However, its applicability is seriously limited because of the small difference in conductivity between modified and unmodified nucleobases. Herein, a chemical labeling strategy is presented that facilitates the detection of modified nucleotides by quantum tunneling. We used 5-Formyl-2'-deoxyuridine as a model compound and demonstrated that chemical labeling dramatically alters its molecular conductance compared with that of canonical nucleotides; thus, facilitating statistical discrimination, which is impeded in the unlabeled state. This work introduces a chemical strategy that overcomes the intrinsic difficulty in quantum-tunneling-based modification analysis-the similarity of the molecular conductance of the nucleobases of interest.


Subject(s)
DNA/analysis , Deoxyuridine/analogs & derivatives , Quantum Theory , Deoxyuridine/chemistry , Electric Conductivity , Molecular Structure
4.
Chem Sci ; 11(37): 10135-10142, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-34094276

ABSTRACT

A quantum sequencer offers a scalable electrical platform for single-molecule analysis of genomic events. A thymidine (dT) analog exhibiting uniquely high single-molecule conductance is a key element in capturing DNA synthesis dynamics by serving as a decodable marker for enzymatic labeling of nascent strands. However, the current design strategies of dT analogs that focus on their molecular orbital energy levels require bulky chemical modifications to extend the π-conjugation, which hinders polymerase recognition. We report herein a polymerase-compatible dT analog that is highly identifiable in quantum sequencing. An ethynyl group is introduced as a small gold-binding motif to differentiate the nucleobase-gold electronic coupling, which has been an overlooked factor in modifying nucleobase conductance. The resulting C5-ethynyl-2'-deoxyuridine exhibits characteristic signal profiles that allowed its correct identification at a 93% rate while maintaining polymerase compatibility. This study would expand the applicability of quantum sequencing by demonstrating a robust nucleoside marker with high identifiability.

5.
ACS Nano ; 13(5): 5028-5035, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30888791

ABSTRACT

Quantum-tunneling-based DNA sequencing is a single molecular technology that has great potential for achieving facile and high-throughput DNA sequencing. In principle, the sequence of DNA could be read out by the time trace of the tunnel current that can be changed according to molecular conductance of nucleobases passing through nanosized gap electrodes. However, efficient base-calling of four genetic alphabets has been seriously impeded due to the similarity of molecular conductance among canonical nucleotides. In this article, we demonstrate that replacement of canonical 2'-deoxyadenosine (dA) with a highly conductive dA analogue, 7-deaza dA, could expand the difference of molecular conductance between four genetic alphabets. Additionally, systematic evaluation of molecular conductance using a series of dA and dG analogues revealed that molecular conductance of the nucleotide is highly dependent on the HOMO level. Thus, the present study demonstrating that signal characteristics of the nucleotide can be modulated based on the HOMO level provides a widely applicable chemical approach and insight for facilitation of single molecular sensing as well as DNA sequencing based on quantum tunneling.


Subject(s)
Base Pairing , Nucleotides/genetics , Sequence Analysis, DNA , Deoxyadenosines/chemistry , Electric Conductivity , Molecular Conformation , Nucleotides/chemistry , Oligonucleotides/chemistry
6.
Anal Sci ; 32(5): 543-7, 2016.
Article in English | MEDLINE | ID: mdl-27169654

ABSTRACT

An on-cell aptamer sensor has the potential to reveal cell-cell communications by signalling molecules. We attempted to design new fluorescent aptamer sensors for the sensing of IFN-γ and adenine compounds on cells. BODIPY-labeled external quencher-free aptamer sensors have allowed a turn-on detection of the target molecule with improved off/on efficiency.


Subject(s)
Adenine/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Boron Compounds/chemistry , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Interferon-gamma/analysis , Adenine/chemistry , Cells, Cultured , Humans , Interferon-gamma/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL