Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Virol Methods ; 323: 114852, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979698

ABSTRACT

Hepatitis C virus (HCV) is the major cause of chronic hepatitis and hepatocellular carcinoma. Among its structural proteins, the HCV core protein has been implicated in liver disease. Understanding the role of HCV core proteins in viral diseases is crucial to elucidating disease mechanisms and identifying potential drug targets. However, purification challenges hinder the comprehensive elucidation of the structure and biochemical properties of HCV core proteins. In this study, we successfully solubilized bacterially expressed core protein using a high-salt and detergent-containing buffer and bypassed the denaturing-refolding process. Size-exclusion chromatography revealed three distinct peaks in the HCV-infected cell lysate, with the bacterially expressed soluble core protein corresponding to its second peak. Using a combination of affinity, size exclusion, and multi-modal chromatography purification techniques, we achieved a purity of > 95% for the core protein. Analytical ultracentrifugation revealed monomer formation in the solution. Far UV Circular dichroism spectroscopy identified 25.53% alpha helices and 20.26% beta sheets. These findings strongly suggest that the purified core proteins retained one of the native structures observed in HCV-infected cells.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Hepacivirus , Viral Core Proteins
2.
Molecules ; 24(3)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754650

ABSTRACT

We present a Raman study on the phase transitions of organic/inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I, Br), which are used as solar cells with high power conversion efficiency. The temperature dependence of the Raman bands of CH3NH3PbX3 (X = I, Br) was measured in the temperature ranges of 290 to 100 K for CH3NH3PbBr3 and 340 to 110 K for CH3NH3PbI3. Broad ν1 bands at ~326 cm-1 for MAPbBr3 and at ~240 cm-1 for MAPbI3 were assigned to the MA⁻PbX3 cage vibrations. These bands exhibited anomalous temperature dependence, which was attributable to motional narrowing originating from fast changes between the orientational states of CH3NH3⁺ in the cage. Phase transitions were characterized by changes in the bandwidths and peak positions of the MA⁻cage vibration and some bands associated with the NH3⁺ group.


Subject(s)
Calcium Compounds/chemistry , Halogens/chemistry , Lead/chemistry , Methylamines/chemistry , Oxides/chemistry , Phase Transition , Spectrum Analysis, Raman , Temperature , Titanium/chemistry
3.
Molecules ; 24(3)2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30691007

ABSTRACT

The initial charge separation process of conjugated polymers is one of the key factors for understanding their conductivity. The structure of photogenerated transients in conjugated polymers can be observed by resonance Raman spectroscopy in the near-IR region because they exhibit characteristic low-energy transitions. Here, we investigate the structure and dynamics of photogenerated transients in a regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film, as well as in a pristine P3HT film, using femtosecond time-resolved resonance inverse Raman spectroscopy in the near-IR region. The transient inverse Raman spectrum of the pristine P3HT film at 50 ps suggests coexistence of neutral and charged excitations, whereas that of the P3HT:PCBM blend film at 50 ps suggests formation of positive polarons with a different structure from those in an FeCl3-doped P3HT film. Time-resolved near-IR inverse Raman spectra of the blend film clearly show the absence of charge separation between P3HT and PCBM within the instrument response time of our spectrometer, while they indicate two independent pathways of the polaron formation with time constants of 0.3 and 10 ps.


Subject(s)
Models, Molecular , Photochemical Processes , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Thiophenes/chemistry , Polymers/chemistry , Spectrophotometry, Infrared/methods , Spectrum Analysis, Raman/methods
4.
Biochem Biophys Res Commun ; 508(4): 1050-1055, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30551878

ABSTRACT

Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6 × His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.


Subject(s)
Adhesins, Bacterial/biosynthesis , Antigenic Variation , Bacterial Adhesion , Recombinant Proteins/biosynthesis , Adhesins, Bacterial/isolation & purification , Adhesins, Bacterial/ultrastructure , Humans , Hydrodynamics , Models, Molecular , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction
5.
Biochem Biophys Res Commun ; 496(1): 12-17, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29294326

ABSTRACT

The bacterial flagellar motor rotates in both counterclockwise (CCW) and clockwise (CW) directions. FliG, FliM and FliN form the C ring on the cytoplasmic face of the MS ring made of a transmembrane protein, FliF. The C ring acts not only as a rotor but also as a switch of the direction of motor rotation. FliG consists of three domains: FliGN, FliGM and FliGC. FliGN directly binds to FliF. Intermolecular interactions between FliGM and FliGC drive FliG ring formation. FliGM is responsible for the interaction with FliM. FliGC is involved in the interaction with the stator protein MotA. Adaptive remodeling of the C ring occurs when the motor switches between the CCW and CW states. However, it remained unknown how. Here, we report the effects of a CW-locked deletion mutation (ΔPEV) in FliG of Thermotaoga maritia (Tm-FliG) on FliG-FliG and FliG-FliM interactions. The PEV deletion stabilized the intramolecular interaction between FliGM and FliGC, thereby suppressing the oligomerization of Tm-FliGMC in solution. This deletion also induced a conformational change of HelixMC connecting FliGM and FliGC to reduce the binding affinity of Tm-FliGMC for FliM. We will discuss adaptive remodeling of the C ring responsible for flagellar motor switching.


Subject(s)
Bacterial Proteins/chemistry , Flagella/chemistry , Molecular Motor Proteins/chemistry , Motion , Bacterial Proteins/ultrastructure , Binding Sites , Molecular Motor Proteins/ultrastructure , Protein Binding , Protein Conformation , Structure-Activity Relationship
6.
Anal Sci ; 33(1): 59-64, 2017.
Article in English | MEDLINE | ID: mdl-28070077

ABSTRACT

Voltage-induced infrared spectra of annealed spin-cast thin films of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) (molar ratio, 3:1) were measured in a stepwise cyclic external electric field. Most of the observed infrared bands originated from the ß ferroelectric crystalline phase. The voltage-induced spectral changes were decomposed into zeroth- (original), first-, and second-derivative spectra, and were attributed to the rotational motions of the polymer chains and the vibrational Stark effect. The values of the original spectral absorbance change ratios, ΔA/A, for the 849-cm-1 band (CF2 symmetric stretching, a1) and the 884-cm-1 band (CH2 rocking, b2) of the film exhibited double minimum and maximum peak hysteresis loops, respectively. The intensity of each band increased or decreased suddenly near a coercive field of ±0.6 MV/cm. These sudden intensity changes were attributed to the rotational inversion of the polymer chains that are associated with ferroelectricity.

7.
Mol Microbiol ; 102(3): 405-416, 2016 11.
Article in English | MEDLINE | ID: mdl-27461872

ABSTRACT

FliS chaperone binds to flagellin FliC in the cytoplasm and transfers FliC to a sorting platform of the flagellar type III export apparatus through the interaction between FliS and FlhA for rapid and efficient protein export during flagellar filament assembly. FliS also suppresses the secretion of an anti-σ factor, FlgM. Loss of FliS results in a short filament phenotype although the expression levels of FliC are increased considerably due to an increase in the secretion level of FlgM. Here to clarify the rate limiting step of FliC export in the absence of FliS, we isolated bypass mutants from a Salmonella ΔfliS mutant. All the bypass mutations were identified in FliC. These bypass mutations increased the export rate of FliC by ca. twofold, allowing the bypass mutant cells to produce longer filaments than the parental ΔfliS cells. Both far-UV CD measurements and limited proteolysis revealed that the bypass mutations significantly destabilize the folded structure of FliC monomer. These results suggest that an unfolding step of FliC limits the export rate of FliC in the ΔfliS mutant, thereby producing short filaments. We propose that FliS promotes FliC docking at the FlhA platform to facilitate subsequent unfolding of FliC.


Subject(s)
Bacterial Proteins/metabolism , Flagellin/metabolism , Flagella/metabolism , Flagellin/biosynthesis , Molecular Chaperones/metabolism , Protein Binding , Protein Transport , Salmonella typhimurium/metabolism , Sigma Factor/metabolism , Structure-Activity Relationship
8.
J Bacteriol ; 198(17): 2352-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27325681

ABSTRACT

UNLABELLED: Mycoplasma pneumoniae is a human pathogen that glides on host cell surfaces with repeated catch and release of sialylated oligosaccharides. At a pole, this organism forms a protrusion called the attachment organelle, which is composed of surface structures, including P1 adhesin and the internal core structure. The core structure can be divided into three parts, the terminal button, paired plates, and bowl complex, aligned in that order from the front end of the protrusion. To elucidate the gliding mechanism, we focused on MPN387, a component protein of the bowl complex which is essential for gliding but dispensable for cytadherence. The predicted amino acid sequence showed that the protein features a coiled-coil region spanning residue 72 to residue 290 of the total of 358 amino acids in the protein. Recombinant MPN387 proteins were isolated with and without an enhanced yellow fluorescent protein (EYFP) fusion tag and analyzed by gel filtration chromatography, circular dichroism spectroscopy, analytical ultracentrifugation, partial proteolysis, and rotary-shadowing electron microscopy. The results showed that MPN387 is a dumbbell-shaped homodimer that is about 42.7 nm in length and 9.1 nm in diameter and includes a 24.5-nm-long central parallel coiled-coil part. The molecular image was superimposed onto the electron micrograph based on the localizing position mapped by fluorescent protein tagging. A proposed role of this protein in the gliding mechanism is discussed. IMPORTANCE: Human mycoplasma pneumonia is caused by a pathogenic bacterium, Mycoplasma pneumoniae This tiny, 2-µm-long bacterium is suggested to infect humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides. The mechanism underlying mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated and analyzed the structure of a key protein which is directly involved in the gliding mechanism.


Subject(s)
Bacterial Proteins/metabolism , Mycoplasma pneumoniae/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Movement , Mycoplasma pneumoniae/genetics , Protein Conformation
9.
Mol Microbiol ; 101(4): 656-70, 2016 08.
Article in English | MEDLINE | ID: mdl-27178222

ABSTRACT

The bacterial flagellar type III export chaperones not only act as bodyguards to protect their cognate substrates from aggregation and proteolysis in the cytoplasm but also ensure the order of export through their interactions with an export gate protein FlhA. FlgN chaperone binds to FlgK and FlgL with nanomolar affinity and transfers them to FlhA for their efficient and rapid transport for the formation of the hook-filament junction zone. However, it remains unknown how FlgN releases FlgK and FlgL at the FlhA export gate platform in a timely manner. Here, we have solved the crystal structure of Salmonella FlgN at 2.3 Å resolution and carried out structure-based functional analyses. FlgN consists of three α helices, α1, α2 and α3. Helix α1 adopts two distinct, extended and bent conformations through the conformational change of N-loop between α1 and α2. The N-loop deletion not only increases the probability of FlgN dimer formation but also abolish the interaction between FlgN and FlgK. Highly conserved Asn-92, Asn-95 and Ile-103 residues in helix α3 are involved in the strong interaction with FlgK. We propose that the N-loop coordinates helical rearrangements of FlgN with the association and dissociation of its cognate substrates during their export.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Flagella/chemistry , Flagella/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Transport , Salmonella/metabolism , Sequence Analysis, Protein , Structure-Activity Relationship
10.
J Phys Chem B ; 119(44): 14309-14, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26457654

ABSTRACT

The changes in intensity of the infrared bands of a ferroelectric melt-quenched, cold-drawn film of nylon-11 were measured as a function of a cyclic external electric field of 1.4 MV/cm. The infrared bands assigned to the NH stretching, amide I, NH-vicinal, and CO-vicinal CH2 scissoring modes showed butterfly-shaped hysteresis loops that are characteristic of ferroelectrics; however, the intensity changes of the infrared bands assigned to the CH2 antisymmetric and symmetric stretching modes are small and showed no butterfly-shaped hysteresis loops. These results indicate that the amide groups are inverted, while the methylene groups are not inverted under the external electric field. We propose a new molecular mechanism that explains the ferroelectric properties of nylon-11. Only the amide groups in the antiparallel ß-sheet structure are inverted by the external electric field to form new hydrogen bonds; these two states form a nearly double-minimum potential.

11.
PLoS One ; 10(8): e0134884, 2015.
Article in English | MEDLINE | ID: mdl-26244937

ABSTRACT

The bacterial flagellum contains its own type III secretion apparatus that coordinates protein export with assembly at the distal end. While many interactions among export apparatus proteins have been reported, few have been examined with respect to the differential affinities and dynamic relationships that must govern the mechanism of export. FlhB, an integral membrane protein, plays critical roles in both export and the substrate specificity switching that occurs upon hook completion. Reported herein is the quantitative characterization of interactions between the cytoplasmic domain of FlhB (FlhBC) and other export apparatus proteins including FliK, FlhAC and FliI. FliK and FlhAC bound with micromolar affinity. KD for FliI binding in the absence of ATP was 84 nM. ATP-induced oligomerization of FliI induced kinetic changes, stimulating fast-on, fast-off binding and lowering affinity. Full length FlhB purified under solubilizing, nondenaturing conditions formed a stable dimer via its transmembrane domain and stably bound FliH. Together, the present results support the previously hypothesized central role of FlhB and elucidate the dynamics of protein-protein interactions in type III secretion.


Subject(s)
Bacterial Proteins/metabolism , Flagella/metabolism , Membrane Proteins/metabolism , Salmonella enterica/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Algorithms , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Computer Simulation , Immunoblotting , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Protein Binding , Protein Multimerization/drug effects , Protein Transport , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Salmonella enterica/genetics
12.
Appl Spectrosc ; 69(7): 877-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26036307

ABSTRACT

The Raman spectra of films prepared from 8, 19, and 30 nm nanoparticles of silicon doped with phosphorous were measured with excitation at 514.5 nm. The observed spectra were analyzed by decomposing the observed Raman bands into three symmetric Voigt function bands, which were assigned to the Si-Si stretching modes of crystalline, boundary, and amorphous-like components. The fractions of crystalline, boundary, and amorphous-like regions were estimated from the obtained components. The obtained fractions can be explained as a sphere-like nanoparticle consisting of a crystalline core surrounded with boundary and amorphous-like shells, which is consistent with the transmission electron microscope images showing a sphere-like shape. The observed spectral shape of the 8 nm nanoparticle film showed significant changes upon light irradiation with a power density of 5.5 kW cm(-2), i.e., the amorphous-like region converted to a crystalline one. The temperature of the film under laser irradiation was estimated to be lower than 1041 °C from the anti-Stokes to the Stokes Raman bands due to the Si-Si stretching mode. The observed partial crystallization is probably induced by heating associated with light irradiation.

13.
J Phys Chem B ; 119(13): 4788-94, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25768109

ABSTRACT

We studied the carriers generated in regioregular poly(3-hexylthiophene) (P3HT) upon FeCl3 vapor and solution doping using visible/near-infrared (VIS/NIR) absorption, infrared (IR), and Raman spectroscopy. Upon doping with an FeCl3 solution in air, the main carriers that were generated were positive polarons. Upon doping with FeCl3 vapor, positive polarons also formed initially, but at higher doping levels, positive bipolarons formed with the concomitant disappearance of the positive polarons. The Raman and IR spectra of the positive bipolarons and the positive polarons were obtained. Raman spectroscopy is very useful for characterizing positive polarons and bipolarons. The Raman results indicated that the positive bipolarons were converted to polarons upon heating to 85 °C, indicating that the positive bipolarons formed a metastable state. The temporal changes in the electrical conductivity of a P3HT film upon doping with FeCl3 vapor were measured. The conductivity reached a maximum and then decreased by 2 orders of magnitude. This result suggests that the mobility of the polarons is approximately 100 times as high as that of the bipolarons.

14.
Genes Cells ; 20(3): 173-90, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25492525

ABSTRACT

The molecular machinery of the cyanobacterial circadian clock oscillator consists of three proteins, KaiA, KaiB and KaiC, which interact with each other to generate circadian oscillations in the presence of ATP (the in vitro KaiABC clock oscillator). KaiB comprises four subunits organized as a dimer of dimers. Our previous study suggested that, on interaction with KaiC, the tetrameric KaiB molecule dissociates into two molecules of dimeric KaiB. It is uncertain whether KaiB also exists as a monomer and whether the KaiB monomer can drive normal circadian oscillation. To address these questions, we constructed a new KaiB oligomer mutant with an N-terminal deletion, KaiB10-108 . KaiB10-108 was a monomer at 4 °C but a dimer at 35 °C. KaiB10-108 was able to drive normal clock oscillation in an in vitro reconstituted KaiABC clock oscillator at 25 °C, but it was not able to drive normal circadian gene expression rhythms in cyanobacterial cells at 41 °C. Wild-type KaiB existed in equilibrium between a dimer and tetramer at lower KaiB concentrations or in the presence of 1 m NaCl. Our findings suggest that KaiB is in equilibrium between a monomer, dimer and tetramer in cyanobacterial cells.


Subject(s)
Bacterial Proteins/metabolism , CLOCK Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm , Cyanobacteria/metabolism , Protein Multimerization , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Circadian Rhythm Signaling Peptides and Proteins/genetics , Phosphorylation , Temperature
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1215-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25195894

ABSTRACT

The bacterial flagellar proteins are transported via a specific export apparatus to the distal end of the growing structure for their self-assembly. FliP is an essential membrane component of the export apparatus. FliP has an N-terminal signal peptide and is predicted to have four transmembrane (TM) helices and a periplasmic domain (FliPP) between TM-2 and TM-3. In this study, FliPP from Thermotoga maritima (TmFliPP) and its selenomethionine derivative (SeMet-TmFliPP) were purified and crystallized. TmFliPP formed a homotetramer in solution. Crystals of TmFliPP and SeMet-TmFliPP were obtained by the hanging-drop vapour-diffusion technique with 2-methyl-2,4-pentanediol as a precipitant. These two crystals grew in the hexagonal space group P6222 or P6422, with unit-cell parameters a = b = 114.9, c = 193.8 Å. X-ray diffraction data were collected from crystals of TmFliPP and SeMet-TmFliPP to 2.4 and 2.8 Šresolution, respectively.


Subject(s)
Bacterial Proteins/chemistry , Flagella/chemistry , Periplasm/chemistry , Base Sequence , Crystallization , DNA Primers , Polymerase Chain Reaction , Protein Transport
16.
J Mol Biol ; 426(10): 2082-97, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24650897

ABSTRACT

Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein-protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca(2+) concentration. The oligomerization of STIM1, which triggers extracellular Ca(2+) influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca(2+) concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca(2+) concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca(2+) concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca(2+) influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca(2+) loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca(2+)-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.


Subject(s)
Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Protein Folding , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium Channels , Mice , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Multimerization , Proteolysis , Signal Transduction , Stromal Interaction Molecule 1
18.
Chem Commun (Camb) ; 48(68): 8562-4, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22801589

ABSTRACT

The synthesis and characterization of a stable 1,2-bis(ferrocenyl)diphosphene, wherein a P=P π-bond connects two ferrocenyl units will be reported. This represents an unprecedented example for a d-π electron system containing a heavier pnictogen π-spacer group. Stabilization of the highly reactive P=P π-bond was achieved by steric protection using two bulky ferrocenyl moieties.

19.
J Biol Chem ; 287(35): 29506-15, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22722936

ABSTRACT

The molecular machinery of the cyanobacterial circadian clock consists of three proteins, KaiA, KaiB, and KaiC. The three Kai proteins interact with each other and generate circadian oscillations in vitro in the presence of ATP (an in vitro KaiABC clock system). KaiB consists of four subunits organized as a dimer of dimers, and its overall shape is that of an elongated hexagonal plate with a positively charged cleft flanked by two negatively charged ridges. We found that a mutant KaiB with a C-terminal deletion (KaiB(1-94)), which lacks the negatively charged ridges, was a dimer. Despite its dimeric structure, KaiB(1-94) interacted with KaiC and generated normal circadian oscillations in the in vitro KaiABC clock system. KaiB(1-94) also generated circadian oscillations in cyanobacterial cells, but they were weak, indicating that the C-terminal region and tetrameric structure of KaiB are necessary for the generation of normal gene expression rhythms in vivo. KaiB(1-94) showed the highest affinity for KaiC among the KaiC-binding proteins we examined and inhibited KaiC from forming a complex with SasA, which is involved in the main output pathway from the KaiABC clock oscillator in transcription regulation. This defect explains the mechanism underlying the lack of normal gene expression rhythms in cells expressing KaiB(1-94).


Subject(s)
Activity Cycles/physiology , Bacterial Proteins/metabolism , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial/physiology , Protein Multimerization , Bacterial Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Cyanobacteria/genetics , Mutation , Protein Structure, Quaternary
20.
Genes Cells ; 17(5): 398-419, 2012 May.
Article in English | MEDLINE | ID: mdl-22512339

ABSTRACT

Circadian clocks allow organisms to predict environmental changes of the day/night cycle. In the cyanobacterial circadian clock machinery, the phosphorylation level and ATPase activity of the clock protein KaiC oscillate with a period of approximately 24 h. The time information is transmitted from KaiC to the histidine kinase SasA through the SasA autophosphorylation-enhancing activity of KaiC, ultimately resulting in genome-wide transcription cycles. Here, we showed that SasA derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 has the domain structure of an orthodox histidine kinase and that its C-terminal domain, which contains a phosphorylation site at His160, is responsible for the autophosphorylation activity and the temperature- and phosphorylation state-dependent trimerization / hexamerization activity of SasA. SasA and KaiC associate through their N-terminal domains with an affinity that depends on their phosphorylation states. Furthermore, the SasA autophosphorylation-enhancing activity of KaiC requires the C-terminal ATPase catalytic site and depends on its phosphorylation state. We show that the phosphotransfer activity of SasA is essential for the generation of normal circadian gene expression in cyanobacterial cells. Numerical simulations suggest that circadian time information (free phosphorylated SasA) is released mainly by unphosphorylated KaiC during the late subjective night.


Subject(s)
Bacterial Proteins/metabolism , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Cyanobacteria/metabolism , Molecular Sequence Data , Mutation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...