Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431642

ABSTRACT

Highly optically transparent polycrystalline fluorapatite ceramics with hexagonal crystal structures were fabricated via a liquid-phase synthesis of fluorapatite powder, followed by spark plasma sintering (SPS). The effect of sintering temperature, as observed using a thermopile, on the optical transmittance and microstructure of the ceramics was investigated in order to determine suitable sintering conditions. As a result, high optical transmittance was obtained in the SPS temperature range of 950-1100 °C. The highest optical transmittance was obtained for the ceramic sample sintered at 1000 °C, and its average grain size was evaluated at only 134 nm. The grain size dramatically increased with temperature, and the ceramics became translucent at SPS temperatures above 1200 °C. The mechanical and thermal properties of the ceramics were measured to evaluate the thermal shock parameter, which was found to be comparable to or slightly smaller than that of single-crystal fluorapatite. This transparent polycrystalline fluorapatite ceramic material should prove useful in a wide range of applications, for example as a biomaterial or optical/laser material, in the future. Furthermore, the knowledge obtained in this study should help to promote the application of this ceramic material.

2.
Materials (Basel) ; 13(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255447

ABSTRACT

The relatively narrow choice of magneto-active materials that could be used to construct Faraday devices (such as rotators or isolators) for the mid-infrared wavelengths arguably represents a pressing issue that is currently limiting the development of the mid-infrared lasers. Furthermore, the knowledge of the magneto-optical properties of the yet-reported mid-infrared magneto-active materials is usually restricted to a single wavelength only. To address this issue, we have dedicated this work to a comprehensive investigation of the magneto-optical properties of both the emerging (Dy2O3 ceramics and CeF3 crystal) and established (Y3Fe5O12 crystal) mid-infrared magneto-active materials. A broadband radiation source was used in a combination with an advanced polarization-stepping method, enabling an in-depth analysis of the wavelength dependence of the investigated materials' Faraday rotation. We were able to derive approximate models for the examined dependence, which, as we believe, may be conveniently used for designing the needed mid-infrared Faraday devices for lasers with the emission wavelengths in the 2-µm spectral region. In the case of Y3Fe5O12 crystal, the derived model may be used as a rough approximation of the material's saturated Faraday rotation even beyond the 2-µm wavelengths.

3.
Sci Rep ; 9(1): 10300, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311952

ABSTRACT

Transparent polycrystalline ceramics with cubic crystal structure have played important roles in a wide variety of solid-state laser applications, whereas for non-cubic structures, single crystal only has been used. For further progress in optical technologies, effective materials beyond the current limitations are necessary. Here we report a new type of non-cubic ceramic laser material that overturns conventional common sense. It is hexagonal Nd-doped fluorapatite (Nd:FAP) ceramics with an optical quality comparable to single crystal while having random crystal orientation. It is composed of ultrafine grains with a loss coefficient of 0.18 cm-1 at a lasing wavelength of 1063 nm, and its laser oscillation was demonstrated. This is the first verification of lasing in randomly oriented non-cubic ceramics. Laser oscillation in the non-cubic ceramics was realized through both advanced liquid-phase nano-powder synthesis technology and highly controlled pulsed-current sintering techniques. Our findings should open new avenues for future solid-state laser and optical applications.

4.
Opt Lett ; 43(13): 3065-3068, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29957782

ABSTRACT

As a new bonding technique for high-power laser optics, pulsed electric current bonding (PECB) of sapphire and Nd:YAG ceramics was demonstrated. The optical properties of the composite were measured, and its microstructure at the interface and laser performance was analyzed. The optical transmittance was equal to the theoretical value, and the transmitted wavefront was λ/3 (λ=633 nm); both are appropriate values for laser applications. The microstructural analysis indicated an absence of scattering sources such as pores or non-contact points at the sapphire/Nd:YAG interface, and the distance of yttrium diffusion into the sapphire was theoretically expected to be less than 10 nm, much smaller than that of ceramic materials bonded by conventional thermal diffusion techniques. The laser performance of the composite material showed an 18% higher output power with almost the same threshold power and slope efficiency as a Nd:YAG ceramic due to the sapphire-conductive cooling effect. This new PECB technique for different transparent materials has the potential to bond large aperture optical materials over 100 mm in diameter and could be especially effective for fabricating active laser media for high-average-power lasers having both high-pulse energy and high repetition rates.

5.
Opt Lett ; 42(9): 1864-1866, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28454180

ABSTRACT

The thermally induced depolarization and Verdet constant of CeF3 crystals-their most important characteristics-have been studied in the 79-293 K temperature range. It has been found that thermal effects reduce substantially upon cooling down to 79 K and the Verdet constant grows in inverse proportion to the temperature. It was shown that CeF3 crystals are not inferior to TGG as a medium for Faraday isolators, including cryogenic ones.

6.
Appl Opt ; 55(6): 1351-5, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26906588

ABSTRACT

Liquid nitrogen (LN2) behavior on the surface of excited Yb(3+):YAG is investigated using fluorometry. From the time-resolved temperature variations and integrated fluorescence spectra intensity on this directly cooled Yb(3+):YAG surface, we observe a phase transition of LN2 from nucleate boiling to film boiling. As a result of this pool boiling, good beam quality should occur when the temperature and heat flux at an excited surface of Yb(3+):YAG are below 95 K and 15.8 W/cm2, respectively. That is, the LN2 should remain in a steady state of nucleate boiling to produce good beam quality using pool boiling.

7.
Appl Opt ; 53(9): 1964-9, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24663477

ABSTRACT

We have studied the amplification characteristics of a cryogenically cooled Yb³âº:YAG total-reflection active-mirror (TRAM) ceramic laser including wavefront distortion, birefringence loss, small signal gain (SSG), and temperature rise for developing high-performance master oscillator power amplifier (MOPA) systems. A 0.6 mm thick Yb³âº:YAG ceramic sample was used, and maximum pump intensity ~10 kW/cm² was reached. The transmitted wavefront was measured by using a Shack-Hartmann wavefront sensor, and we evaluated the thermal lens focal length and Strehl ratio for different pump conditions. We have also observed a butterfly-like leakage profile of thermally induced birefringence loss at the maximum pump intensity. From SSG measurements, we obtained moderate laser gain of G=3 for one bounce with a near aberration-free wavefront. Gain calculations, which included also temperature dependence of the emission cross section and reabsorption of Yb³âº:YAG, were in good agreement with the experiments. These experimental results will be useful as benchmark data for numerical simulations of temperature distribution in TRAM and for designing multikilowatt-class high-performance MOPA systems.

8.
Opt Lett ; 38(10): 1751-3, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23938933

ABSTRACT

The thermal-birefringence-induced depolarization in terbium gallium garnet (TGG) ceramics has been investigated experimentally. The depolarization ratio of 6.1×10(-4) has been observed at the maximum input power of 117 W cw, which corresponds to a normalized laser power of p=0.14. As predicted by the previously proposed theory, the amount of depolarization ratio and its slope with respect to the laser power of the ceramic TGG was approximately the same as that previously reported for high-quality-cut <111> single crystal.

9.
Opt Express ; 21(11): 13118-24, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23736565

ABSTRACT

The amplified spontaneous emission (ASE) and parasitic lasing (PL) effects in thin disk laser with an anti-ASE cap have been investigated in detail by measuring both time-resolved radiated intensity at longer axis of elliptical pump profile (dominant ASE direction) and small signal gain (SSG) in laser amplifier. A cryogenically-cooled total-reflection active-mirror laser consisting of 9.8 at.% doped, 0.6-mm thick Yb:YAG and un-doped YAG trapezoidal ceramics cap was used as a sample. The phased transitions from spontaneous emission (SE) to ASE and from ASE to PL have been unambiguously observed. For several pump beam diameters, the ASE gain parameter g(0)l(ASE) at ASE threshold was about 3, and the SSG coefficient was down to about 65% until PL started. To the best of our knowledge, this is the first quantitative characterization of the ASE/PL effects in the thin disk laser with an anti-ASE cap.

10.
Opt Lett ; 38(8): 1277-9, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23595457

ABSTRACT

We propose a simple coherent beam combining technique for applications in high-power multichannel laser amplifier systems with tiled aperture design. Using a photodiode pair coupled with piezo-actuator mirrors, we demonstrated robust beam combining bandwidth (~1 KHz) and root mean-square deviation (~λ/25) for two beam channels. We estimate that the performance of this technique can be further enhanced in terms of operational bandwidth and phase locking accuracy. It is not limited by single beam power or channel number restrictions, does not require optical phase retrieval algorithms, or calibrations, and can be integrated into various master oscillator power amplifier architectures.


Subject(s)
Interferometry/methods , Optical Phenomena , Algorithms , Equipment Design , Interferometry/instrumentation , Lasers
11.
Opt Express ; 20(19): 21739-48, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037293

ABSTRACT

We analyzed the output power characteristics of a cryogenically cooled Yb:YAG total-reflection active-mirror (TRAM) laser oscillator including the temperature dependence of the emission cross section and the reabsorption loss of the Yb:YAG TRAM. A CW multi-transverse mode oscillation of a 9.8 at.% doped 0.6 mm thick Yb:YAG ceramic TRAM was investigated for various pump spot sizes and compared with theoretical results. The Yb:YAG temperatures were inferred from the ratio between fluorescence intensities at 1022 nm and 1027 nm which varied significantly with temperature below 200 K. Output power calculations using evaluated temperatures were in good agreement with the experimental data measured between 77 and 200 K, and the output power suppression due to the temperature rise observed above ~140 K. To the best of our knowledge, this is the first evaluation of output power for a cryogenically cooled Yb:YAG TRAM laser.

12.
Opt Express ; 20(28): 29531-9, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388780

ABSTRACT

The temperature dependence of the thermo-optic effect in cryogenically cooled Yb:YAG ceramics was evaluated by measuring the thermo-optic coefficient (the derivative of refractive index with respect to temperature, i.e., dn/dT), thermal expansion coefficient (α), and thermal conductivity (κ) between 70 and 300 K. These parameters significantly improved at low temperature. Observed values indicated that a laser gain medium cooled to 70 K can sustain a thermal load up to 20 times higher than that at 300 K, for comparable thermo-optic effects. To our best knowledge, this is the first quantitative evaluation of the improvement in thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics.

13.
Opt Express ; 19(3): 2448-55, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369064

ABSTRACT

We report on a novel amplifier configuration concept for a 10 kW laser system using a zig-zag optical path based on a cryogenic Yb:YAG Total-Reflection Active-Mirror (TRAM) laser. The laser material is a compact composite ceramic, in which three Yb:YAG TRAMs are combined in series to increase the output power. Output powers of up to 214 W with a slope efficiency of 63% have been demonstrated for CW operation, even at a quite low pump intensity of less than 170 W/cm2. Further scaling could achieve output powers of more than 10 kW.


Subject(s)
Amplifiers, Electronic , Ceramics/chemistry , Lasers , Lenses , Cold Temperature , Equipment Design , Equipment Failure Analysis
14.
Opt Express ; 19(25): 25199-205, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273911

ABSTRACT

We investigate the effect of dispersion compensation on temporal characteristics in mode-locking by nonlinear polarization rotation in an ytterbium-doped fiber (YDF) oscillator with intracavity and external grating pairs. A short fixed length YDF was spliced with a longer single-mode fiber (SMF). Using experimentally measured dispersion characteristics of the YDF, SMF and cavity optics, we control the group velocity dispersion (GVD) and spectral broadening in a cavity by changing the SMF length. As a result, the oscillator generated 29.4-fs transform-limited wing-free pulses, which are to our knowledge the shortest and cleanest pulses achieved without the use of additional optics like a prism pair for high-order dispersion compensation. The results show that a precise balance of higher order terms of the GVD and self-phase modulation is essential for shortening pulse duration.


Subject(s)
Artifacts , Computer-Aided Design , Fiber Optic Technology/instrumentation , Oscillometry/instrumentation , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Ytterbium/chemistry , Equipment Design , Equipment Failure Analysis , Feedback
15.
Opt Lett ; 34(21): 3439-41, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19881620

ABSTRACT

An efficient high-power laser operation has been demonstrated by using a cryogenic Yb:YAG composite ceramic with a total-reflection active-mirror arrangement. The composite ceramic, which had no high-reflection coating and was cooled with liquid nitrogen directly, showed four-level operation even at 67 kW/cm(3) of high pump density. A 273 W cw output power was obtained with 65% optical efficiency and 72% slope efficiency.


Subject(s)
Ceramics , Cold Temperature , Lasers, Solid-State , Ytterbium
SELECTION OF CITATIONS
SEARCH DETAIL
...