Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1259138, 2024.
Article in English | MEDLINE | ID: mdl-38347914

ABSTRACT

Motor nerve organoids could be generated by culturing a spheroid of motor neurons differentiated from human induced pluripotent stem (iPS) cells within a polydimethylsiloxane (PDMS) chip which guides direction and fasciculation of axons extended from the spheroid. To isolate axon bundles from motor nerve organoids, we developed a rapid laser dissection method based on localized photothermal combustion. By illuminating a blue laser on a black mark on the culture device using a dry-erase marker, we induced highly localized heating near the axon bundles. Moving the laser enabled spatial control over the local heating and severing of axon bundles. This laser dissection requires a black mark, as other colors did not produce the same localized heating effect. A CO2 laser destroyed the tissue and the device and could not be used. With this simple, economical laser dissection technique, we could rapidly collect abundant pure axon samples from motor nerve organoids for biochemical analysis. Extracted axonal proteins and RNA were indistinguishable from manual dissection. This method facilitates efficient axon isolation for further analyses.

2.
Materials (Basel) ; 16(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37629891

ABSTRACT

The deformation-induced surface roughening of an Al-Mg alloy is analyzed using a combination of experiments and modeling. A mesoscale oligocrystal of AA5052-O, obtained by recrystallization annealing and subsequent thickness reduction by machining, that contains approx. 40 grains is subjected to uniaxial tension. The specimen contains one layer of grains through the thickness. A laser confocal microscope is used to measure the surface topography of the deformed specimen. A finite element model with realistic (non-columnar) shapes of the grains based on a pair of Electron Back-Scatter Diffraction (EBSD) scans of a given specimen is constructed using a custom-developed shape interpolation procedure. A Crystal Plasticity Finite Element (CPFE) framework is then applied to the voxel model of the tension test of the oligocrystal. The unknown material parameters are determined inversely using an efficient, custom-built optimizer. Predictions of the deformed shape of the specimen, surface topography, evolution of the average roughness with straining and texture evolution are compared to experiments. The model reproduces the averaged features of the problem, while missing some local details. As an additional verification of the CPFE model, the statistics of surface roughening are analyzed by simulating uniaxial tension of an AA5052-O polycrystal and comparing it to experiments. The averaged predictions are found to be in good agreement with the experimentally observed trends. Finally, using the same polycrystalline specimen, texture-morphology relations are discovered, using a symbolic Monte Carlo approach. Simple relations between the Schmid factor and roughness can be inferred purely from the experiments. Novelties of this work include: realistic 3D shapes of the grains; efficient and accurate identification of material parameters instead of manual tuning; a fully analytical Jacobian for the crystal plasticity model with quadratic convergence; novel texture-morphology relations for polycrystal.

3.
Materials (Basel) ; 15(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35744407

ABSTRACT

The martensitic phase transformation (MPT) is one of the most important factors that enhances the surface roughening of stainless-steel thin metal foils (TMF), such as SUS 304, compared to others without MPT, even in the same plastic strain. However, the conventional roughening model does not take into account the influence of MPT. In this study, the authors proposed a new constitutive model to express the surface roughening by taking the influence of MPT into account. The volume fractions of MPT for TMF of SUS304 in various grain sizes are accounted for quantitatively after the tensile test at room temperature and an elevated temperature, and the effect of MPT on the surface roughening is evaluated in comparison to using TMF of SUS316, in which MPT does not occur during plastic deformation. Then, a constitutive model of the surface roughening based on the experimental results is successfully built.

4.
Mater Sci Eng C Mater Biol Appl ; 121: 111819, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579462

ABSTRACT

Magnesium (Mg) has mechanical properties similar to human bones and Mg alloy is considered ideal medical implant material. However, the high velocity of degradation inside the human inner environment severely hampers the usage of Mg alloys. In this study, caerin peptide 1.9 (F3) and a modified sequence of caerin 1.1 (F1) with anti-bacterial activity, were covalently immobilised on the surface of Mg alloys by plasma chemical click reaction. The in vitro antibacterial activity and corrosion resistance of these caerin peptide-immobilised Mg alloys were investigated in Dulbecco's Modified Eagle Medium (DMEM) solution. Un-immobilised Mg alloy sample, blank drug-sensitive tablet (BASD) and a commonly used antibiotics Tazocin were used for comparison. Results showed that peptide immobilised Mg samples showed observable improved corrosion resistance and prolonged antibacterial effect compared to non-immobilised Mg alloy and free caerin peptides. These results indicate that coating Mg alloy with caerin peptides obviously increases the alloy's antibacterial ability and putatively improves the corrosion resistance in vitro. The mechanism underlying the prolonged antibacterial effect for annealed Mg alloys immobilised with the peptides (especially F3) remains unclear, which worth further experimental and theoretical investigation.


Subject(s)
Alloys , Pharmaceutical Preparations , Alloys/pharmacology , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible , Corrosion , Humans , Magnesium , Peptides/pharmacology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...