Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Immunology ; 11(3): e1381, 2022.
Article in English | MEDLINE | ID: mdl-35356066

ABSTRACT

Group 2 innate lymphoid cells (ILC2) are a relatively new class of innate immune cells. Lung ILC2 are early responders that secrete type 2 cytokines in response to danger 'alarmin' signals such as interleukin (IL)-33 and thymic stromal lymphopoietin. Being an early source of type 2 cytokines, ILC2 are a critical regulator of type 2 immune cells of both innate and adaptive immune responses. The immune regulatory functions of ILC2 were mostly investigated in diseases where T helper 2 inflammation predominates. However, in recent years, it has been appreciated that the role of ILC2 extends to other pathological conditions such as cancer and viral infections. In this review, we will focus on the potential role of lung ILC2 in the induction of mucosal immunity against influenza virus infection and discuss the potential utility of ILC2 as a target for mucosal vaccination.

2.
Curr Opin HIV AIDS ; 7(2): 187-94, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22274659

ABSTRACT

PURPOSE OF REVIEW: The search for the role(s) that HIV-1 Vpr and its HIV2/SIV paralogs Vpr and Vpx play in viral infection and pathogenesis showed that all three engage CRL4 ubiquitin ligase complexes. This association triggers ubiquitination and degradation of cellular substrates. The identity of the ubiquitin ligase substrates is only now beginning to be revealed. This review focuses on recent work that has identified one such substrate and exposed new cellular restrictions to infection. RECENT FINDINGS: Three groups have now described cellular factors that restrict HIV-1 infection in cells of the myeloid lineage. One of these factors, sterile alpha motif- and metal-dependent phosphohydrolase domain-containing protein 1 (SAMHD1), was shown to be depleted through the CRL4 ubiquitin ligase complex in the presence of HIV-2/SIV Vpx. The other restriction can be defeated by Vpx in the absence of at least one part of the ubiquitin ligase complex that triggers SAMHD1 depletion.Another group has shown that the previously described upregulation of natural killer-cell ligands on the surface of HIV-1-infected cells requires the actions of both the cytidine deaminase APOBEC3G and uracil-N-glycosylase 2 in association with HIV-1 Vpr. SUMMARY: As more cellular interaction partners are identified for HIV-1 Vpr and its paralogs from other viruses, details are emerging about Vpr function. The recent findings have highlighted the existence of two new human proteins that can act to combat HIV infection and have revealed how HIV-1 proteins act in concert to modulate the interaction between natural killer cells and HIV-1 infected cells.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cell Cycle Checkpoints/drug effects , HIV Infections/virology , HIV-1/pathogenicity , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , HIV Infections/immunology , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Ligands , Monomeric GTP-Binding Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1 , Ubiquitin-Protein Ligase Complexes/metabolism , vpr Gene Products, Human Immunodeficiency Virus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...