Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 284: 103563, 2021 02.
Article in English | MEDLINE | ID: mdl-33053424

ABSTRACT

The pontine Kölliker-Fuse nucleus (KFn) is a core nucleus of respiratory network that mediates the inspiratory-expiratory phase transition and gates eupneic motor discharges in the vagal and hypoglossal nerves. In the present study, we investigated whether the same KFn circuit may also gate motor activities that control the resistance of the nasal airway, which is of particular importance in rodents. To do so, we simultaneously recorded phrenic, facial, vagal and hypoglossal cranial nerve activity in an in situ perfused brainstem preparation before and after bilateral injection of the GABA-receptor agonist isoguvacine (50-70 nl, 10 mM) into the KFn (n = 11). Our results show that bilateral inhibition of the KFn triggers apneusis (prolonged inspiration) and abolished pre-inspiratory discharge of facial, vagal and hypoglossal nerves as well as post-inspiratory discharge in the vagus. We conclude that the KFn plays a critical role for the eupneic regulation of naso-pharyngeal airway patency and the potential functions of the KFn in regulating airway patency and orofacial behavior is discussed.


Subject(s)
Facial Nerve/physiology , Hypoglossal Nerve/physiology , Kolliker-Fuse Nucleus/physiology , Motor Activity/physiology , Nerve Net/physiology , Phrenic Nerve/physiology , Respiration , Vagus Nerve/physiology , Animals , Facial Nerve/drug effects , Female , GABA Agonists/pharmacology , Hypoglossal Nerve/drug effects , Isonicotinic Acids/pharmacology , Kolliker-Fuse Nucleus/drug effects , Male , Motor Activity/drug effects , Nerve Net/drug effects , Phrenic Nerve/drug effects , Rats , Rats, Sprague-Dawley , Respiration/drug effects , Respiratory Center , Respiratory Rate/drug effects , Respiratory Rate/physiology , Vagus Nerve/drug effects
2.
J Physiol ; 594(6): 1617-25, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26095748

ABSTRACT

With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC-MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity-induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity.


Subject(s)
Central Nervous System/physiology , Leptin/metabolism , Obesity/physiopathology , Respiration , Animals , Central Nervous System/metabolism , Central Nervous System/physiopathology , Humans , Obesity/metabolism
3.
Life Sci ; 125: 25-31, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25645056

ABSTRACT

Leptin, a peptide hormone produced by adipose tissue, acts in brain centers that control critical physiological functions such as metabolism, breathing and cardiovascular regulation. The importance of leptin for respiratory control is evident by the fact that leptin deficient mice exhibit impaired ventilatory responses to carbon dioxide (CO2), which can be corrected by intracerebroventricular leptin replacement therapy. Leptin is also recognized as an important link between obesity and hypertension. Humans and animal models lacking either leptin or functional leptin receptors exhibit many characteristics of the metabolic syndrome, including hyperinsulinemia, insulin resistance, hyperglycemia, dyslipidemia and visceral adiposity, but do not exhibit increased sympathetic nerve activity (SNA) and have normal to lower blood pressure (BP) compared to lean controls. Even though previous studies have extensively focused on the brain sites and intracellular signaling pathways involved in leptin effects on food intake and energy balance, the mechanisms that mediate the actions of leptin on breathing and cardiovascular function are only beginning to be elucidated. This mini-review summarizes recent advances on the effects of leptin on cardiovascular and respiratory control with emphasis on the neural control of respiratory function and autonomic activity.


Subject(s)
Cardiovascular Physiological Phenomena , Leptin/metabolism , Respiration , Animals , Blood Pressure , Humans , Melanocortins/metabolism , Sympathetic Nervous System/physiology
4.
Acta Physiol (Oxf) ; 213(4): 893-901, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25207799

ABSTRACT

UNLABELLED: Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. AIM: Here, we tested if MC4R also contributes to leptin's effects on respiratory function. METHODS: After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with leptin infused into the brain lateral ventricle for 7 days. On the 6th day of treatment, tidal volume (VT ), respiratory frequency (fR ) and pulmonary ventilation (VE ) were measured by whole-body plethysmography during normocapnia or hypercapnia (7% CO2 ). Baseline mean arterial pressure (MAP), heart rate (HR) and metabolic rate were also measured. VE , VT and fR were also measured in mice with leptin receptor deletion in the entire central nervous system (LepR/Nestin-cre) or only in proopiomelanocortin neurones (LepR/POMC-cre) and in MC4R knockout (MC4R(-/-) ) and wild-type mice. RESULTS: Leptin (5 µg day(-1) ) reduced body weight (~17%) and increased ventilatory response to hypercapnia, whereas SHU9119 (0.6 nmol day(-1) ) increased body weight (~18%) and reduced ventilatory responses compared with control-PBS group (Lep: 2119 ± 90 mL min(-1)  kg(-1) and SHU9119: 997 ± 67 mL min(-1)  kg(-1) , vs. PBS: 1379 ± 91 mL min(-1)  kg(-1) ). MAP increased after leptin treatment (130 ± 2 mmHg) compared to PBS (106 ± 3 mmHg) or SHU9119 alone (109 ± 3 mmHg). SHU9119 prevented the effects of leptin on body weight, MAP (102 ± 3 mmHg) and ventilatory response to hypercapnia (1391 ± 137 mL min(-1)  kg(-1) ). The ventilatory response to hypercapnia was attenuated in the LepR/Nestin-cre, LepR/POMC-cre and MC4R(-/-) mice. CONCLUSION: These results suggest that central MC4R mediate the effects of leptin on respiratory response to hypercapnia.


Subject(s)
Leptin/pharmacology , Melanocortins/metabolism , Melanocyte-Stimulating Hormones/pharmacology , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Respiratory Physiological Phenomena/drug effects , Animals , Body Weight/drug effects , Carbon Dioxide/blood , Gene Expression Regulation , Hypercapnia/chemically induced , Leptin/administration & dosage , Male , Melanocyte-Stimulating Hormones/administration & dosage , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/genetics
5.
Acta Physiol (Oxf) ; 211(1): 240-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24521430

ABSTRACT

AIM: Leptin, an adipocyte-derived hormone, is suggested to participate in the central control of breathing. We hypothesized that leptin may facilitate ventilatory responses to chemoreflex activation by acting on respiratory nuclei of the ventrolateral medulla. The baseline ventilation and the ventilatory responses to CO2 were evaluated before and after daily injections of leptin into the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) for 3 days in obese leptin-deficient (ob/ob) mice. METHODS: Male ob/ob mice (40-45 g, n = 7 per group) received daily microinjections of vehicle or leptin (1 µg per 100 nL) for 3 days into the RTN/pFRG. Respiratory responses to CO2 were measured by whole-body plethysmography. RESULTS: Unilateral microinjection of leptin into the RTN/pFRG in ob/ob mice increased baseline ventilation (VE ) from 1447 ± 96 to 2405 ± 174 mL min(-1) kg(-1) by increasing tidal volume (VT ) from 6.4 ± 0.4 to 9.1 ± 0.8 mL kg(-1) (P < 0.05). Leptin also enhanced ventilatory responses to 7% CO2 (Δ = 2172 ± 218 mL min(-1) kg(-1) , vs. control: Δ = 1255 ± 105 mL min(-1) kg(-1) ), which was also due to increased VT (Δ = 4.71 ± 0.51 mL kg(-1) , vs. control: Δ = 2.27 ± 0.20 mL kg(-1) ), without changes in respiratory frequency. Leptin treatment into the RTN/pFRG or into the surrounding areas decreased food intake (83 and 70%, respectively), without significantly changing body weight. CONCLUSION: The present results suggest that leptin acting in the respiratory nuclei of the ventrolateral medulla improves baseline VE and VT and facilitates respiratory responses to hypercapnia in ob/ob mice.


Subject(s)
Leptin/pharmacology , Medulla Oblongata/drug effects , Obesity/genetics , Respiratory Mechanics/drug effects , Animals , Eating/drug effects , Leptin/genetics , Leptin/metabolism , Male , Mice , Mice, Obese , Obesity/metabolism , Tidal Volume/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...