Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15971, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749290

ABSTRACT

Median sternotomy is the surgical method of choice for many procedures where one of the main problems is the long post-operative wound healing process leading to sternal dehiscence and the development of infection. This leads to prolonged hospital stay and increased mortality due to post-operative complications. A promising solution seems to be the use of allogeneic chondrocytes for wound treatment, whose properties in the field of cartilage reconstruction are widely used in medicine, mainly in orthopedics. In the present study, we investigated the effect of local delivery of allogeneic chondrocytes on the biological response and healing of the sternum after sternotomy. We optimized the culture conditions for the isolated chondrocytes, which were then applied to the sternal incision wound. Chondrocytes in the culture were assessed on the basis of the presence of chondrocyte-specific genes: Sox9, Aggrecan and Collagen II. In turn, the histopathological and immunohistochemical evaluation was used to assess the safety of implantation. In our work, we demonstrated the possibility of obtaining a viable culture of chondrocytes, which were successfully introduced into the sternal wound after sternotomy. Importantly, implantation of allogeneic chondrocytes showed no significant side effects. The obtained results open new possibilities for research on the use of allogeneic chondrocytes in the process of accelerating wound healing after median sternotomy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Sternotomy , Chondrocytes , Sternum/surgery , Wound Healing
2.
Front Bioeng Biotechnol ; 11: 1205122, 2023.
Article in English | MEDLINE | ID: mdl-37456734

ABSTRACT

Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).

3.
Biomedicines ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36830880

ABSTRACT

Ischemic heart disease (IHD) is one of the main focuses in today's healthcare due to its implications and complications, and it is predicted to be increasing in prevalence due to the ageing population. Although the conventional pharmacological and interventional methods for the treatment of IHD presents with success in the clinical setting, the long-term complications of cardiac insufficiency are on a continual incline as a result of post-infarction remodeling of the cardiac tissue. The migration and involvement of stem cells to the cardiac muscle, followed by differentiation into cardiac myocytes, has been proven to be the natural process, though at a slow rate. SDF-1α is a novel candidate to mobilize stem cells homing to the ischemic heart. Endogenous SDF-1α levels are elevated after myocardial infarction, but their presence gradually decreases after approximately seven days. Additional administration of SDF-1α-releasing microspheres could be a tool for the extension of the time the stem cells are in the cardiac tissue after myocardial infarction. This, in turn, could constitute a novel therapy for more efficient regeneration of the heart muscle after injury. Through this practical study, it has been shown that the controlled release of SDF-1α from biodegradable microspheres into the pericardial sac fourteen days after myocardial infarction increases the concentration of exogenous SDF-1α, which persists in the tissue much longer than the level of endogenous SDF-1α. In addition, administration of SDF-1α-releasing microspheres increased the expression of the factors potentially involved in the involvement and retention of myocardial stem cells, which constitutes vascular endothelial growth factor A (VEGFA), stem cell factor (SCF), and vascular cell adhesion molecules (VCAMs) at the site of damaged tissue. This exhibits the possibility of combating the basic limitations of cell therapy, including ineffective stem cell implantation and the ability to induce the migration of endogenous stem cells to the ischemic cardiac tissue and promote heart repair.

4.
Bioengineering (Basel) ; 9(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36550960

ABSTRACT

Stem cell treatment is a promising method of therapy for the group of patients whose conventional options for treatment have been limited or rejected. Stem cells have the potential to repair, replace, restore and regenerate cells. Moreover, their proliferation level is high. Owing to these features, they can be used in the treatment of numerous diseases, such as cancer, lung diseases or ischemic heart diseases. In recent years, stem cell therapy has greatly developed, shedding light on stromal-derived factor 1α (SDF-1α). SDF-1α is a mobilizing chemokine for application of endogenous stem cells to injury sites. Unfortunately, SDF-1α presented short-term results in stem cell treatment trials. Considering the tremendous benefits of this therapy, we developed biodegradable polymeric microspheres for the release of SDF-1α in a controlled and long-lasting manner. The microspheres were designed from poly(L-lactide/glycolide/trimethylene carbonate) (PLA/GA/TMC). The effect of controlled release of SDF-1α from microspheres was investigated on the migration level of bone marrow Mesenchymal Stromal Cells (bmMSCs) derived from a pig. The study showed that SDF-1α, released from the microspheres, is more efficient at attracting bmMSCs than SDF-1α alone. This may enable the controlled delivery of selected and labeled MSCs to the destination in the future.

5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232377

ABSTRACT

Abdominal aortic aneurysm (AAA) is one of the most dangerous cardiovascular diseases, occurring mainly in men over the age of 55 years. As it is asymptomatic, patients are diagnosed very late, usually when they suffer pain in the abdominal cavity. The late detection of AAA contributes to the high mortality rate. Many environmental, genetic, and molecular factors contribute to the development and subsequent rupture of AAA. Inflammation, apoptosis of smooth muscle cells, and degradation of the extracellular matrix in the AAA wall are believed to be the major molecular processes underlying AAA formation. Until now, no pharmacological treatment has been implemented to prevent the formation of AAA or to cure the disease. Therefore, it is important that patients are diagnosed at a very early stage of the disease. Biomarkers contribute to the assessment of the concentration level, which will help to determine the level and rate of AAA development. The potential biomarkers today include homocysteine, cathepsins, osteopontin, and osteoprotegerin. In this review, we describe the major aspects of molecular processes that take place in the aortic wall during AAA formation. In addition, biomarkers, the monitoring of which will contribute to the prompt diagnosis of AAA patients over the age of 55 years, are described.


Subject(s)
Aortic Aneurysm, Abdominal , Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/genetics , Biomarkers/metabolism , Cathepsins/metabolism , Extracellular Matrix/metabolism , Homocysteine/metabolism , Humans , Inflammation/metabolism , Male , Middle Aged , Osteopontin/metabolism , Osteoprotegerin/metabolism
6.
Biomolecules ; 12(5)2022 04 19.
Article in English | MEDLINE | ID: mdl-35625536

ABSTRACT

Apoptosis is a widely controlled, programmed cell death, defects in which are the source of various diseases such as neurodegenerative diseases as well as cancer. The use of apoptosis in the therapy of various human diseases is of increasing interest, and the analysis of the factors involved in its regulation is valuable in designing specific carriers capable of targeting cell death. Highly efficient and precisely controlled delivery of genetic material by low-toxic carriers is one of the most important challenges of apoptosis-based gene therapy. In this work, we investigate the effect of the star polymer with 28 poly(N,N'-dimethylaminoethyl methacrylate) arms (STAR) on human cells, according to its concentration and structure. We show that star polymer cytotoxicity increases within its concentration and time of cells treatment. Except for cytotoxic effect, we observe morphological changes such as a shrinkage, loss of shape and begin to detach. We also prove DNA condensation after star polymer treatment, one of the most characteristic feature of apoptosis. The results indicate that the use of STAR triggers apoptosis in cancer cells compared to various normal cells, what makes these nanoparticles a promising drug in therapeutic strategy, which targets apoptosis. We demonstrate highlighting potential of star polymers as an innovative tool for anti-cancer therapy.


Subject(s)
Nanoparticles , Polymers , Apoptosis , Cell Death , Humans , Methacrylates/chemistry , Methacrylates/pharmacology , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology
7.
Biomolecules ; 11(10)2021 10 10.
Article in English | MEDLINE | ID: mdl-34680126

ABSTRACT

Osteogenesis Imperfecta (OI) is a group of connective tissue disorders with a broad range of phenotypes characterized primarily by bone fragility. The prevalence of OI ranges from about 1:15,000 to 1:20,000 births. Five types of the disease are commonly distinguished, ranging from a mild (type I) to a lethal one (type II). Types III and IV are severe forms allowing survival after the neonatal period, while type V is characterized by a mild to moderate phenotype with calcification of interosseous membranes. In most cases, there is a reduction in the production of normal type I collagen (col I) or the synthesis of abnormal collagen as a result of mutations in col I genes. Moreover, mutations in genes involved in col I synthesis and processing as well as in osteoblast differentiation have been reported. The currently available treatments try to prevent fractures, control symptoms and increase bone mass. Commonly used medications in OI treatment are bisphosphonates, Denosumab, synthetic parathyroid hormone and growth hormone for children therapy. The main disadvantages of these therapies are their relatively weak effectiveness, lack of effects in some patients or cytotoxic side effects. Experimental approaches, particularly those based on stem cell transplantation and genetic engineering, seem to be promising to improve the therapeutic effects of OI.


Subject(s)
Osteogenesis Imperfecta/therapy , Cellular Reprogramming , Endoplasmic Reticulum Stress , Humans , Models, Biological , Osteogenesis Imperfecta/classification , Phenotype , Stem Cell Transplantation
8.
Front Bioeng Biotechnol ; 9: 701031, 2021.
Article in English | MEDLINE | ID: mdl-34354988

ABSTRACT

Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.

9.
J Appl Genet ; 62(3): 487-497, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34080122

ABSTRACT

The aim of the study was to investigate specific potential markers for cells obtained from three layers of human AAA divided into three segments along the AAA based on morphological differences. The isolated cells were compared to control commercial cell types from healthy human abdominal aortas. For each type of aortic layer, three specimens from 6 patients were compared. Total RNA was isolated from 36 cell cultures for gene expression profiling and potential new cytometry markers were typed. Isolated cells were analyzed by flow cytometry by using fluorochrome-conjugated antibodies to markers: CNN1, MYH10, ENG, ICAM2, and TEK. The relative expression of 45 genes in primary cell cultures and control lines was analyzed. Statistically significant differences were found in the expression of most of the analyzed genes between individual layers and control lines. Based on relative expression, antibodies were selected for flow cytometry. Gene expression profiles allowed to select new potential cytometry markers: CNN1, MYH10, MYOCD, ENG, ICAM2, TEK. However, none of the tested markers seems to be optimal and characteristic for a specific layer of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Biomarkers , Aorta, Abdominal , Aortic Aneurysm, Abdominal/genetics , Gene Expression Profiling , Humans , Transcriptome
10.
J Appl Genet ; 62(3): 499-506, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34091862

ABSTRACT

Abdominal aortic aneurysm refers to abnormal, asymmetric distension of the infrarenal aortic wall due to pathological remodelling of the extracellular matrix. The distribution of enzymes remodelling the extracellular matrix and their expression patterns in the affected tissue are largely unknown. The goal of this work was to investigate the expression profiles of 20 selected genes coding for metalloproteinases and their inhibitors in the proximal to the distal direction of the abdominal aortic aneurysm. RNA samples were purified from four lengthwise fragments of aneurysm and border tissue obtained from 29 patients. The quantities of selected mRNAs were determined by real-time PCR to reveal the expression patterns. The genes of interest encode collagenases (MMP1, MMP8, MMP13), gelatinases (MMP2, MMP9), stromelysins (MMP3, MMP7, MMP10, MMP11, MMP12), membrane-type MMPs (MMP14, MMP15, MMP16), tissue inhibitors of metalloproteinases (TIMP1, TIMP2, TIMP3, TIMP4), and ADAMTS proteinases (ADAMTS1, ADAMTS8, and ADAMTS13). It was found that MMP, TIMP, and ADAMTS are expressed in all parts of the aneurysm with different patterns. A developed aneurysm has such a disturbed expression of the main participants in extracellular matrix remodelling that it is difficult to infer the causes of the disorder development. MMP12 secreted by macrophages at the onset of inflammation may initiate extracellular matrix remodelling, which, if not controlled, initiates a feedback loop leading to aneurysm formation.


Subject(s)
Aortic Aneurysm, Abdominal , Matrix Metalloproteinases , Tissue Inhibitor of Metalloproteinases , ADAMTS Proteins/genetics , Aortic Aneurysm, Abdominal/genetics , Humans , Matrix Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/genetics
11.
Biomolecules ; 11(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-34067183

ABSTRACT

Induced pluripotent stem cells (iPSCs) are defined as reprogrammed somatic cells exhibiting embryonic stem cell characteristics. Since their discovery in 2006, efforts have been made to utilize iPSCs in clinical settings. One of the promising fields of medicine, in which genetically patient-specific stem cells may prove themselves useful, is gene therapy. iPSCs technology holds potential in both creating models of genetic diseases and delivering therapeutic agents into the organism via auto-transplants, which reduces the risk of rejection compared to allotransplants. However, in order to safely administer genetically corrected stem cells into patients' tissues, efforts must be made to establish stably pluripotent stem cells and reduce the risk of insertional tumorigenesis. In order to achieve this, optimal reprogramming factors and vectors must be considered. Therefore, in this review, the molecular bases of reprogramming safe iPSCs for clinical applications and recent attempts to translate iPSCs technology into the clinical setting are discussed.


Subject(s)
Genetic Therapy/methods , Induced Pluripotent Stem Cells/cytology , Stem Cell Transplantation/methods , Cellular Reprogramming , Humans , Induced Pluripotent Stem Cells/metabolism , Regenerative Medicine , Transplantation, Autologous
12.
Int J Pharm ; 589: 119823, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32861771

ABSTRACT

We designed a novel thermoresponsive system of nanolayers composed of star poly[oligo(ethylene glycol) methacrylate]s (S-POEGMA) covalently bonded to a solid support and covered with polyplexes of cationic star polymers and plasmid DNA (pDNA). S-POEGMA stars were attached to the solid support via a UV-mediated "grafting to" method. To the best of our knowledge, for the first time, the conformational changes of obtained star nanolayers, occurring with changes in temperature, were studied using a quartz crystal microbalance technique. Next, the polyplexes of star poly[N,N'-dimethylaminoethyl methacrylate-ran-di(ethylene glycol) methacrylate] (S-P(DMAEMA-DEGMA)) with pDNA, exhibiting a phase transition temperature (TCP) in culture medium DMEM, were deposited on S-POEGMA layers when the temperature increased above the TCP of polyplex. The thermoresponsivity of the system was then the main mechanism for controlling the adhesion, proliferation, transfection and detachment of HT-1080 cells. The nanolayers promoted the effective cell culture and delivered nucleic acids into cells, with a transfection efficiency several times higher than that of the control. The detachment of the transfected cells was regulated only by the change of temperature. The studies demonstrated that we obtained a novel and effective system, based on a star polymer architecture, useful for gene delivery and tissue engineering applications.


Subject(s)
Gene Transfer Techniques , Polymers , DNA , Genetic Therapy , Methacrylates , Plasmids , Transfection
13.
Materials (Basel) ; 13(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545841

ABSTRACT

In this work, we studied the stability of matrices with temperature-dependent solubility and their interactions with water at physiological temperature for their application in cell culture in vitro. Gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)) were used to prepare the matrices. The comonomer ratio during polymerization was chosen such that the cloud point temperature (TCP) of the copolymer was below 37 °C while the glass transition (Tg) was above 37 °C. The role of the support for matrices in the context of their stability in aqueous solution was examined. Therefore, matrices in the form of both self-supported bulk polymer materials (fibrillar mats and molds) and polymer films supported on the silica slides were examined. All of the matrices remained undissolved when incubated in water at a temperature above TCP. For the self-supported mats and molds, we observed the loss of shape stability, but, in the case of films supported on silica slides, only slight changes in morphology were observed. For a more in-depth investigation of the origin of the shape deformation of self-supported matrices, we analyzed the wettability, thickness, and water uptake of films on silica support because the matrices remained undeformed under these conditions. It was found that, above the TCP of P(iPrOx-nPrOx), the wettability of the films decreased, but at the same time the films absorbed water and swelled. We examined how this specific behavior of the supported films influenced the culture of fibroblasts. The temperature-dependent solubility of the matrices and the possibility of noninvasive cell separation were also examined.

SELECTION OF CITATIONS
SEARCH DETAIL
...