Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(20): 31212-31228, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615219

ABSTRACT

In this paper we report the design of a device allowing on-chip optical wireless interconnections, based on transmitting and receiving Optical Phased Arrays (OPA). The proposed device aims at realizing high-bandwidth and power-efficient reconfigurable connections between multiple nodes, e.g. chiplets stacked onto a common silicon interposer in 2.5D manycore systems. The communication through an optical wireless switch is a completely novel approach to overcome the bottleneck of wired communication and to provide flexibility in the network topology configuration. We report the OPA design criteria as well as the results of three-dimensional Finite Difference Time Domain (FDTD) simulations. We exploit the in-plane radiation of simple taper antennas to implement 1×N and N × N switching matrices. The effect of the multipath propagation in the on-chip multi-layered medium is also taken into account.

2.
Sensors (Basel) ; 21(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502625

ABSTRACT

This paper is aimed at the characterization and manufacturing of an SMA coaxial fed compact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030-1.090 GHz and the 3.4-3.8 GHz bands thanks to a bent side and a 'C' shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV commercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM).

3.
Sensors (Basel) ; 19(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871107

ABSTRACT

In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.


Subject(s)
Artificial Intelligence , Internet , Aged , Aged, 80 and over , Delivery of Health Care , Female , Humans , Male
4.
Appl Opt ; 55(28): 7788-7795, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27828008

ABSTRACT

Direct modulation of a laser source is often utilized in realizing optical fiber connections where the cost of the entire system must be kept at a low level. An undesired consequence of this choice is the onset of the laser frequency chirp effect, which is detrimental in the case of either digital or analog links, and must be evaluated with precision in order to perform an accurate design of the whole system. Various methods of evaluation of the chirp parameters have been proposed, and the choice among them is typically made on the basis of the laboratory equipment available at the moment. This paper adds a further element to the set of possible choices, since it presents a method for the evaluation of the adiabatic chirp factor in distributed feedback (DFB) laser sources, which exploits a simple interferometric scheme, guarantees low cost, and shows, at the same time, good accuracy of the results.

SELECTION OF CITATIONS
SEARCH DETAIL
...