Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 97(2): 131-7, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11341788

ABSTRACT

INTRODUCTION: Expression of somatostatin receptor subtype 2 (sst 2) in angiogenic tumor vessels appears to be homogeneous, while tumor cell expression of this receptor is often heterogeneous. We have developed a novel in vitro three-dimensional tumor angiogenesis model to study the antitumor and the antiangiogenic effects of radiolabeled somatostatin analogs. We hypothesized that targeted in situ radiation with an Auger electron-emitting radiolabeled somatostatin analog would produce receptor-specific cytotoxicity in sst 2-expressing cells. MATERIALS AND METHODS: IMR-32 human neuroblastoma (sst 2-positive) and MDA MB-231 human breast cancer (sst 2-negative) xenografts were created in nude mice from monolayer cell cultures. Fragments of these tumors were embedded in three-dimensional fibrin gels supplemented with endothelial growth media and incubated for a period of 14 days. Tumor fragments were treated with 50 microCi/ml of (111)In-JIC 2DL, a sst 2-preferring somatostatin analog, or medium on Day 1. Initial angiogenic activity was determined at 48 h and the mean angiogenic score and tumoricidal responses were assessed on Day 14. RESULTS AND CONCLUSION: Tumoricidal effects of (111)In-JIC 2DL were seen only in sst 2-positive IMR-32 tumors. However, the angiogenic response was inhibited in both IMR-32 and MDA MB-231 tumors independent of the tumor cells' sst 2 status. Somatostatin receptor-mediated in situ radiation therapy has profound cytotoxic effects on angiogenic blood vessels and sst 2-expressing tumor cells.


Subject(s)
Contrast Media/pharmacology , Indium Radioisotopes/pharmacology , Neovascularization, Pathologic/radiotherapy , Pentetic Acid/pharmacology , Receptors, Somatostatin/metabolism , Adenocarcinoma , Amino Acid Sequence , Animals , Breast Neoplasms , Female , Humans , In Vitro Techniques , Mice , Mice, Nude , Molecular Sequence Data , Neoplasm Transplantation , Neuroblastoma , Octreotide/chemistry , Octreotide/pharmacology , Pentetic Acid/analogs & derivatives , Tumor Cells, Cultured
2.
J Pept Res ; 53(2): 201-13, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10195457

ABSTRACT

Radio-labeled somatostatin analogs have recently gained popularity as agents useful in intraoperative tumor localization, external scintigraphy and in situ radiotherapy. We have synthesized and characterized a series of novel N-terminally extended multiply-tyrosinated somatostatin analogs that possess high binding affinity for somatostatin receptors, exhibit biological activity comparable to the native peptide and retain these characteristics after iodination. These analogs can be radio-iodinated to high specific activities. Following radioiodination, these analogs exhibit minimal radiolysis and may be clinically useful for tumor localization, scanning and therapy.


Subject(s)
Peptides/metabolism , Somatostatin/analogs & derivatives , Somatostatin/pharmacology , Adenocarcinoma, Bronchiolo-Alveolar/diagnosis , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Adenylyl Cyclase Inhibitors , Aged , Amino Acid Sequence , Brain Neoplasms/diagnosis , Brain Neoplasms/secondary , Diagnostic Imaging , Growth Hormone/antagonists & inhibitors , Humans , Iodine/chemistry , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Peptides/pharmacokinetics , Radionuclide Imaging/methods , Somatostatin/chemical synthesis , Tissue Distribution , Tumor Cells, Cultured , Tyrosine/chemistry
3.
Endocrinology ; 139(12): 4928-35, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9832430

ABSTRACT

Tumor necrosis factor-alpha (TNF-alpha) has been shown to induce insulin resistance in cultured cells as well as in animal models. The aim of this study was to map the in vivo mechanism whereby TNF-alpha contributes to the pathogenesis of impaired insulin signaling, using obese and lean Zucker rats in which TNF-alpha activity was inhibited through adenovirus-mediated gene transfer. We employed a replication-incompetent adenovirus-5 (Ad5) vector to endogenously express a TNF inhibitor (TNFi) gene, which encodes a chimeric protein consisting of the extracellular domain of the human 55-kDa TNF receptor joined to a mouse IgG heavy chain. Control animals consisted of rats infected with the same titer of adenovirus carrying the lac-z complementary DNA, encoding for beta-galactosidase. There was a significant reduction in plasma insulin and free fatty acid levels in TNFi obese rats 2 days following Ad5 administration. The peripheral insulin sensitivity index was 50% greater, whereas hepatic glucose output was completely suppressed during hyperinsulinemic glucose clamps in TNFi obese animals, with no differences observed between the two lean groups. The improvement in peripheral and hepatic sensitivity to insulin seen in the obese animals was independent of insulin receptor (IR) number and insulin binding affinity for IR. However, TNF-alpha neutralization led to a 2.5-fold increase in tyrosine phosphorylation of IR in skeletal muscle, whereas this was unchanged in liver. There was also a 4-fold increase in particulate protein tyrosine phosphatase activity of skeletal muscle in TNFi obese animals vs. beta-galactosidase controls, whereas protein tyrosine phosphatase activity in liver was unchanged. These results suggest that TNF-alpha is a mediator of insulin resistance in obesity and may modulate IR signaling in skeletal muscle and liver through different pathways. TNF-alpha may affect insulin action in the liver either at sites distal to the IR or indirectly, possibly because of increased provision of gluconeogenic substrates or altered counterregulation. In addition, the Ad5-mediated gene delivery system employed here provides an in vivo model that is efficient and economical for exploring mechanisms involved in TNF-alpha-induced insulin resistance in various genetic models of obesity-linked diabetes.


Subject(s)
Insulin Resistance/physiology , Insulin/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Blood Physiological Phenomena , Glucose Clamp Technique , Humans , Insulin/metabolism , Liver/physiology , Mice , Obesity/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , Rats/blood , Rats, Zucker , Receptor, Insulin/metabolism , Reference Values , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tyrosine/metabolism
4.
J Surg Res ; 76(2): 154-8, 1998 May.
Article in English | MEDLINE | ID: mdl-9698516

ABSTRACT

BACKGROUND: Radiolabeled somatostatin analogs have gained popularity for tumor imaging and have recently been used for the treatment of somatostatin receptor-expressing tumors. We have developed a novel, N-terminally extended, multiply iodinated somatostatin analog, 125I-WOC 4a, that we hypothesize will be a useful tool for the detection of and therapy for somatostatin receptor-positive tumors. To evaluate the therapeutic potential of this agent, we compared the cytotoxicity of 125I-WOC 4a in a somatostatin receptor subtype-2 (sst 2)-expressing human neurobalstoma cell line to its cytotoxicity in a somatostatin receptor-negative human pancreatic carcinoma cell line. METHODS: IMR-32 neuroblastoma cells (sst 2-positive) and PANC-1 human pancreatic cells (sst 2-negative) were incubated with 125I-WOC 4a at doses ranging from 0.1-100 CPM/cell for 48 h and cell viability was assessed by a colorimetric (MTT) cell viability assay. Subsequently, IMR-32 cells were incubated with either control medium, 125I-WOC 4a (1 cpm/cell) alone, 125I-WOC 4a with 10(-6) M octreotide acetate, 125I (1 cpm/cell) alone, 125I with octreotide acetate, or octreotide acetate alone for 48 h, washed, and cryopreserved for 4 weeks. Cells were then thawed, replated, and allowed to acclimate for 48 h. Cell viability was assessed by trypan blue exclusion and a colorimetric assay. RESULTS: Following short-term exposure, 125I-WOC 4a induced dose-dependent cytotoxicity in IMR-32 cells (P < 0.05 by ANOVA), but not in the PANC-1 cells. After exposure to 125I-WOC 4a (1 cpm/cell) for 48 h followed by a 4-week cryopreserved exposure, significant cytotoxicity was induced in IMR-32 cells (P < 0.05 by ANOVA) which was not seen in cells treated with 125I alone or 125I with 10(-6) M octreotide acetate. Simultaneous exposure to 125I-WOC 4a and octreotide acetate was also cytotoxic. CONCLUSION: 125I-WOC 4a induces receptor-specific cytotoxicity following both short- and long-term drug exposures. This radiopharmaceutical may be useful for localizing or treating somatostatin receptor-positive tumors.


Subject(s)
Iodine Radioisotopes , Neuroblastoma/pathology , Oligopeptides/pharmacology , Pancreatic Neoplasms/pathology , Radiopharmaceuticals/pharmacology , Receptors, Somatostatin/analysis , Somatostatin/analogs & derivatives , Amino Acid Sequence , Cell Death , Humans , Octreotide/pharmacology , Receptors, Somatostatin/physiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...