Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(39): 21502-21511, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34339591

ABSTRACT

The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.

2.
J Am Chem Soc ; 143(29): 10998-11006, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34279927

ABSTRACT

We report a combined experimental/theoretical approach to studying heterogeneous gas/solid catalytic processes using low-pressure pulse response experiments achieving a controlled approach to equilibrium that combined with quantum mechanics (QM)-based computational analysis provides information needed to reconstruct the role of the different surface reaction steps. We demonstrate this approach using model catalysts for ammonia synthesis/decomposition. Polycrystalline iron and cobalt are studied via low-pressure TAP (temporal analysis of products) pulse response, with the results interpreted through reaction free energies calculated using QM on Fe-BCC(110), Fe-BCC(111), and Co-FCC(111) facets. In TAP experiments, simultaneous pulsing of ammonia and deuterium creates a condition where the participation of reactants and products can be distinguished in both forward and reverse reaction steps. This establishes a balance between competitive reactions for D* surface species that is used to observe the influence of steps leading to nitrogen formation as the nitrogen product remains far from equilibrium. The approach to equilibrium is further controlled by introducing delay timing between NH3 and D2 which allows time for surface reactions to evolve before being driven in the reverse direction from the gas phase. The resulting isotopic product distributions for NH2D, NHD2, and HD at different temperatures and delay times and NH3/D2 pulsing order reveal the role of the N2 formation barrier in controlling the surface concentration of NHx* species, as well as providing information on the surface lifetimes of key reaction intermediates. Conclusions derived for monometallic materials are used to interpret experimental results on a more complex and active CoFe bimetallic catalyst.

3.
ACS Appl Mater Interfaces ; 9(11): 9815-9822, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28262012

ABSTRACT

We recently showed that phase-pure molybdenum carbide nanotubes can be durable supports for platinum (Pt) nanoparticles in hydrogen evolution reaction (HER). In this paper we further characterize surface properties of the same Pt/ß-Mo2C catalyst platform using carbon monoxide (CO)-Pt and CO-Mo2C bond strength of different Pt particle sizes in the <3 nm range. Results from diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temporal analysis of products (TAP) revealed the existence of different active sites as Pt particle size increases. Correlation between the resultant catalyst activity and deposited Pt particle size was further investigated using water-gas-shift (WGS) as a probe reaction, suggesting that precise control of particle diameter and thickness is needed for optimized catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...