Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3543, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730244

ABSTRACT

ß-N-Acetylgalactosamine-containing glycans play essential roles in several biological processes, including cell adhesion, signal transduction, and immune responses. ß-N-Acetylgalactosaminidases hydrolyze ß-N-acetylgalactosamine linkages of various glycoconjugates. However, their biological significance remains ambiguous, primarily because only one type of enzyme, exo-ß-N-acetylgalactosaminidases that specifically act on ß-N-acetylgalactosamine residues, has been documented to date. In this study, we identify four groups distributed among all three domains of life and characterize eight ß-N-acetylgalactosaminidases and ß-N-acetylhexosaminidase through sequence-based screening of deep-sea metagenomes and subsequent searching of public protein databases. Despite low sequence similarity, the crystal structures of these enzymes demonstrate that all enzymes share a prototype structure and have diversified their substrate specificities (oligosaccharide-releasing, oligosaccharide/monosaccharide-releasing, and monosaccharide-releasing) through the accumulation of mutations and insertional amino acid sequences. The diverse ß-N-acetylgalactosaminidases reported in this study could facilitate the comprehension of their structures and functions and present evolutionary pathways for expanding their substrate specificity.


Subject(s)
Acetylgalactosamine , Glycoside Hydrolases , Metagenome , Metagenome/genetics , Substrate Specificity , Acetylgalactosamine/metabolism , Acetylgalactosamine/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/chemistry , Phylogeny , Crystallography, X-Ray , Amino Acid Sequence , Animals
2.
J Appl Glycosci (1999) ; 71(1): 9-13, 2024.
Article in English | MEDLINE | ID: mdl-38799412

ABSTRACT

Transient absorption at 340 nm under alkaline conditions has long been used to detect the presence of 3-keto-O-glycosides without understanding the molecular basis of the absorbance. The time course of A340 nm for the alkaline treatment of 3-ketolevoglucosan, an intramolecular 3-keto-O-glycoside, was investigated to identify the three products generated through alkaline treatment. By comparing the spectra of these compounds under neutral and alkaline conditions, we identified 1,5-anhydro-D-erythro-hex-1-en-3-ulose (2-hydroxy-3-keto-D-glucal) as being the compound responsible for the absorption.

3.
Plant J ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678521

ABSTRACT

L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.

4.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441834

ABSTRACT

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Dipeptidases , Glutathione , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Glutathione/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Dipeptidases/metabolism , Dipeptidases/genetics , Cytosol/metabolism , Dipeptides/metabolism , Sulfur/metabolism
5.
Structure ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38492570

ABSTRACT

Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.

6.
J Biol Chem ; 300(3): 105774, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382672

ABSTRACT

Gum arabic (GA) is widely used as an emulsion stabilizer and edible coating and consists of a complex carbohydrate moiety with a rhamnosyl-glucuronate group capping the non-reducing ends. Enzymes that can specifically cleave the glycosidic chains of GA and modify their properties are valuable for structural analysis and industrial application. Cryogenic X-ray crystal structure of GA-specific L-rhamnose-α-1,4-D-glucuronate lyase from Fusarium oxysporum (FoRham1), belonging to the polysaccharide lyase (PL) family 42, has been previously reported. To determine the specific reaction mechanism based on its hydrogen-containing enzyme structure, we performed joint X-ray/neutron crystallography of FoRham1. Large crystals were grown in the presence of L-rhamnose (a reaction product), and neutron and X-ray diffraction datasets were collected at room temperature at 1.80 and 1.25 Å resolutions, respectively. The active site contained L-rhamnose and acetate, the latter being a partial analog of glucuronate. Incomplete H/D exchange between Arg166 and acetate suggested that a strong salt-bridge interaction was maintained. Doubly deuterated His105 and deuterated Tyr150 supported the interaction between Arg166 and the acetate. The unique hydrogen-rich environment functions as a charge neutralizer for glucuronate and stabilizes the oxyanion intermediate. The NE2 atom of His85 was deprotonated and formed a hydrogen bond with the deuterated O1 hydroxy of L-rhamnose, indicating the function of His85 as the base/acid catalyst for bond cleavage via ß-elimination. Asp83 functions as a pivot between the two catalytic histidine residues by bridging them. This His-His-Asp structural motif is conserved in the PL 24, 25, and 42 families.


Subject(s)
Fusarium , Polysaccharide-Lyases , Humans , Acetates , Crystallography, X-Ray , Glucuronic Acid/chemistry , Hydrogen , Lyases , Polysaccharide-Lyases/chemistry , Rhamnose/chemistry , Fusarium/enzymology
7.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324037

ABSTRACT

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Subject(s)
Bifidobacterium , Glycoside Hydrolases , Catalysis , Cysteine
8.
FEBS J ; 291(2): 308-322, 2024 01.
Article in English | MEDLINE | ID: mdl-37700610

ABSTRACT

d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.


Subject(s)
Escherichia coli , Glycine Hydroxymethyltransferase , Animals , Humans , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Tetrahydrofolates , Methyltransferases , Serine , Hydro-Lyases/genetics , Mammals/metabolism
9.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029967

ABSTRACT

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


Subject(s)
4-Hydroxybenzoate-3-Monooxygenase , Pseudomonas , 4-Hydroxybenzoate-3-Monooxygenase/metabolism , Binding Sites , Flavoproteins/genetics , Flavoproteins/metabolism , Kinetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Phylogeny , Pseudomonas/enzymology , Pseudomonas/metabolism , Xylophilus/enzymology
10.
Microbiome Res Rep ; 2(3): 20, 2023.
Article in English | MEDLINE | ID: mdl-38046823

ABSTRACT

Aim: Bifidobacterium longum subsp. infantis uses a glycoside hydrolase (GH) family 42 ß-galactosidase (BiBga42A) for hydrolyzing lacto-N-tetraose (LNT), which is the most abundant core structure of human milk oligosaccharides (HMOs). As such, BiBga42A represents one of the pivotal enzymes underpinning the symbiosis between bifidobacteria and breastfed infants. Despite its importance, the structural basis underlying LNT hydrolysis by BiBga42A is not understood. Moreover, no substrate-complexed structures are available to date for GH42 family members. Methods: X-ray crystallography was used to determine the structures of BiBga42A in the apo- and liganded forms. The roles of the amino acid residues that were presumed to be involved in catalysis and substrate recognition were examined by a mutational study, in which kinetic parameters of each mutant were determined using 4-nitrophenyl-ß-D-galactoside, lacto-N-biose I, LNT, and lacto-N-neotetraose (LNnT) as substrates. Conservation of those amino acid residues was examined among structure-determined GH42 ß-galactosidases. Results: Crystal structures of the wild-type enzyme complexed with glycerol, the E160A/E318A double mutant complexed with galactose (Gal), and the E318S mutant complexed with LNT were determined at 1.7, 1.9, and 2.2 Å resolutions, respectively. The LNT molecule (excluding the Gal moiety at subsite +2) bound to the E318S mutant is recognized by an extensive hydrogen bond network and several hydrophobic interactions. The non-reducing end Gal moiety of LNT adopts a slightly distorted conformation and does not overlap well with the Gal molecule bound to the E160A/E318A mutant. Twelve of the sixteen amino acid residues responsible for LNT recognition and catalysis in BiBga42A are conserved among all homologs including ß-1,6-1,3-galactosidase (BlGal42A) from Bifidobacterium animalis subsp. lactis. Conclusion: BlGal42A is active on 3-ß-galactobiose similarly to BiBga42A but is inactive on LNT. Interestingly, we found that the entrance of the catalytic pocket of BlGal42A is narrower than that of BiBga42A and seems not easily accessible from the solvent side due to the presence of two bulky amino acid side chains. The specificity difference may reflect the structural difference between the two enzymes.

12.
Nat Commun ; 14(1): 5803, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726269

ABSTRACT

The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of D-arabinose, the enantiomer of the typical L-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-D-arabinanases, GH172 exo-α-D-arabinofuranosidase, and GH116 exo-ß-D-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex D-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and ß-D-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these D-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity.


Subject(s)
Endometriosis , Mycobacterium tuberculosis , Animals , Female , Humans , Galactans , Lipopolysaccharides , Mammals
13.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Article in English | MEDLINE | ID: mdl-36864192

ABSTRACT

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Subject(s)
Ecosystem , Mucins , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/metabolism
14.
Appl Environ Microbiol ; 89(3): e0218622, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36847541

ABSTRACT

Cytochrome P450 enzymes are promising biocatalysts for industrial use because they catalyze site-selective C-H oxidation and have diverse catalytic reactions and a broad substrate range. In this study, the 2α-hydroxylation activity of CYP154C2 from Streptomyces avermitilis MA-4680T toward androstenedione (ASD) was identified by an in vitro conversion assay. The testosterone (TES)-bound structure of CYP154C2 was solved at 1.42 Å, and this structure was used to design eight mutants, including single, double, and triple mutants, to improve the conversion efficiency. Mutants L88F/M191F and M191F/V285L were found to enhance the conversion rates significantly (i.e., 8.9-fold and 7.4-fold for TES, 46.5-fold and 19.5-fold for ASD, respectively) compared with the wild-type (WT) enzyme while retaining high 2α-position selectivity. The substrate binding affinity of the L88F/M191F mutant toward TES and ASD was enhanced compared with that of WT CYP154C2, supporting the measured increase in the conversion efficiencies. Moreover, the total turnover number and kcat/Km of the L88F/M191F and M191F/V285L mutants increased significantly. Interestingly, all mutants containing L88F generated 16α-hydroxylation products, suggesting that L88 in CYP154C2 plays a vital role in substrate selectivity and that the amino acid corresponding to L88 in the 154C subfamily affects the orientation of steroid binding and substrate selectivity. IMPORTANCE Hydroxylated derivatives of steroids play essential roles in medicine. Cytochrome P450 enzymes selectively hydroxylate methyne groups on steroids, which can dramatically change their polarity, biological activity and toxicity. There is a paucity of reports on the 2α-hydroxylation of steroids, and documented 2α-hydroxylate P450s show extremely low conversion efficiency and/or low regio- and stereoselectivity. This study conducted crystal structure analysis and structure-guided rational engineering of CYP154C2 and efficiently enhanced the conversion efficiency of TES and ASD with high regio- and stereoselectivity. Our results provide an effective strategy and theoretical basis for the 2α-hydroxylation of steroids, and the structure-guided rational design of P450s should facilitate P450 applications in the biosynthesis of steroid drugs.


Subject(s)
Cytochrome P-450 Enzyme System , Steroids , Hydroxylation , Steroids/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Testosterone/metabolism , Substrate Specificity
15.
Biophys Physicobiol ; 20(2): e200017, 2023.
Article in English | MEDLINE | ID: mdl-38496246

ABSTRACT

Cooking with fire produces foods containing carbohydrates that are not naturally occurring, such as α-d-fructofuranoside found in caramel. Each of the hundreds of compounds produced by caramelization reactions is considered to possess its own characteristics. Various studies from the viewpoints of biology and biochemistry have been conducted to elucidate some of the scientific characteristics. Here, we review the composition of caramelized sugars and then describe the enzymatic studies that have been conducted and the physiological functions of the caramelized sugar components that have been elucidated. In particular, we recently identified a glycoside hydrolase (GH), GH172 difructose dianhydride I synthase/hydrolase (αFFase1), from oral and intestinal bacteria, which is implicated in the degradation of oligosaccharides in caramel. The structural basis of αFFase1 and its ligands provided many insights. This discovery opened the door to several research fields, including the structural and phylogenetic relationship between the GH172 family enzymes and viral capsid proteins and the degradation of cell membrane glycans of acid-fast bacteria by some αFFase1 homologs. This review article is an extended version of the Japanese article, Identification and Structural Basis of an Enzyme Degrading Oligosaccharides in Caramel, published in SEIBUTSU BUTSURI Vol. 62, p. 184-186 (2022).

16.
Bioorg Med Chem ; 75: 117054, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36334492

ABSTRACT

To understand the precise mechanism of the glycoside hydrolase (GH) family 127, a cysteine ß-l-arabinofuranosidase (Arafase) - HypBA1 - has been isolated from Bifidobacterium longum in the human Gut microbiota, and the design and synthesis of the mechanism-based inhibitors such as l-Araf-haloacetamides have been carried out. The α-l-Araf-azide derivative was used as the monoglycosylamine equivalent to afford the l-Araf-chloroacetamides (α/ß-1-Cl) as well as bromoacetamides (α/ß-1-Br) in highly stereoselective manner through Staudinger reaction followed by amide formation with/without anomerization. Against HypBA1, the probes 1, especially in the case of α/ß-1-Br inhibited the hydrolysis. Conformational implications of these observations are discussed in this manuscript. Additional examinations using l-Araf-azides (α/ß-5) resulted in further mechanistic observations of the GH127/146 cysteine glycosidases, including the hydrolysis of ß-5 as the substrate and oxidative inhibition by α-5 using the GH127 homologue.

17.
Plant J ; 111(6): 1626-1642, 2022 09.
Article in English | MEDLINE | ID: mdl-35932489

ABSTRACT

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Glucosinolates/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Peptide Hydrolases/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism
18.
Bioorg Med Chem ; 68: 116849, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35653870

ABSTRACT

Methyl ß-l-arabinofuranosyl-(1 â†’ 2)-, -(1 â†’ 3)-, and -(1 â†’ 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose ß-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing ß-l-arabinofuranosyl-(1 â†’ 5)-l-arabinofuranosyl non-reducing terminal structure with the branched ß-l-arabinofuranosyl-(1 â†’ 5)-[α-l-arabinofuranosyl-(1 â†’ 3)]-α-l-arabinofuranosyl and the liner ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial ß-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to ß-(1 â†’ 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, ß-(1 â†’ 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to ß-(1 â†’ 2)-linkage than bifidobacterial HypBA1.


Subject(s)
Disaccharides , Glycoside Hydrolases , Glycoside Hydrolases/metabolism , Substrate Specificity
19.
Biosci Biotechnol Biochem ; 86(4): 464-475, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35092420

ABSTRACT

Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a ß-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.


Subject(s)
Bacterial Proteins , Oligosaccharides , Animals , Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Haplorhini , Humans , Milk, Human , Oligosaccharides/chemistry
20.
Glycobiology ; 32(2): 171-180, 2022 03 19.
Article in English | MEDLINE | ID: mdl-34735571

ABSTRACT

ß-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-ß-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, ß-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the ß-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.


Subject(s)
Cysteine , Zinc , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Glycoside Hydrolases/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...