Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Agric Food Chem ; 63(42): 9239-50, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26457588

ABSTRACT

The impact of whey protein isolate (WPI) and fish gelatin (FG) deposited sequentially at concentrations of 0.1, 0.5, and 0.75% on the surface of primary oil-in-water emulsions containing 5% flaxseed oil stabilized with either 0.5% fish gelatin or whey protein, respectively, was investigated. The results revealed that the adsorption of WPI/FG or FG/WPI complexes to the emulsion interface led to the formation of oil-in-water (o/w) emulsions with different stabilities and different protection degrees of the flaxseed oil. Deposition of FG on the WPI primary emulsion increased the particle size (from 0.53 to 1.58 µm) and viscosity and decreased electronegativity (from -23.91 to -11.15 mV) of the complexes. Different trends were noted with the deposition of WPI on the FG primary emulsion, resulting in decreasing particle size and increasing electronegativity and viscosity to a lower extent. Due to the superior tension-active property of WPI, the amount of protein load in the WPI primary emulsion as well as in WPI/FG complex was significantly higher than the FG counterparts. A multilayer emulsion made with 0.5% WPI/0.75% FG exhibited the lowest oxidation among all of the multilayered emulsions tested (0.32 ppm of hexanal) after 21 days, likely due to the charge effect of FG that may prevent pro-oxidant metals to interact with the flaxseed oil.


Subject(s)
Drug Compounding/methods , Fish Proteins/chemistry , Gelatin/chemistry , Linseed Oil/chemistry , Whey Proteins/chemistry , Animals , Drug Compounding/instrumentation , Drug Stability , Emulsions/chemistry , Fishes , Particle Size , Viscosity
3.
Food Funct ; 5(7): 1495-505, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24832672

ABSTRACT

A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed to quantify lemon oil components and their degradation products in oil-in-water (O/W) emulsions prepared with sodium caseinate-heated-lactose (NaC-T + Lact) glycoconjugates as wall materials at two pH values (3.0 and 6.8). NaC-T + Lact conjugates had a significantly lower solubility at both pHs. Hydrolysis prior to glycation enhanced the solubility of glycoconjugates. Glycation with lactose did not improve the emulsion activity of NaC, while caseinate glycoconjugates showed much stronger antioxidant activity than the NaC-control sample. This might be due to the presence of melanoidins formed between the sugar and amino acid compounds as supported by the increase in browning intensity. Among the SPME-fibres tested, carboxen/polydimethylsiloxane (CAR/PDMS) provided better results in terms of sensitivity and selectivity for oil lemon components and their degradation products. Storage studies of these emulsions demonstrated that glycated NaC-T + Lact showed protection against peroxidation compared to the control. However, acidic pH conditions altered their stability over storage time. The major off-flavor components (α-terpineol and carvone) were inhibited in emulsions stabilized with glycated NaC, particularly at pH 6.8. The use of NaC-T + Lact conjugates showed improved encapsulation efficiency and stability and could be used as potential food ingredient-emulsifiers for stabilising citrus oils against oxidative degradation in food and beverage applications.


Subject(s)
Caseins/chemistry , Gas Chromatography-Mass Spectrometry , Glycoconjugates/chemistry , Plant Oils/chemistry , Solid Phase Microextraction , Calibration , Cyclohexane Monoterpenes , Cyclohexenes/chemistry , Emulsions/chemistry , Hydrogen-Ion Concentration , Monoterpenes/chemistry , Oxidation-Reduction
4.
Food Chem ; 141(3): 2707-12, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871014

ABSTRACT

Coenzyme Q10 (CoQ10) was encapsulated successfully in a nutraceutical formulation composed of calcium caseinate, flaxseed oil and lecithin. The effect of CoQ10 on the physico-chemical stability of emulsions was compared to emulsions without CoQ10. According to ATR-FTIR analysis, emulsions were found to be more stable in the presence of CoQ10. The emulsion with CoQ10 was used as a functional cream in the cheese making process. The retention rate of CoQ10, composition and cheese yield were also determined. Quantification of CoQ10 by HPLC showed that the retention of this lipophilic agent into cheese matrix was 93% and equivalent to the total lipid retention. Protein retention and cheese yield were not affected by the addition of the functional cream. For the first time, CoQ10 has been encapsulated in a cheese matrix, hence demonstrating that CoQ10 could be used in the development of functional cheeses.


Subject(s)
Cheese/analysis , Dietary Supplements/analysis , Food Additives/chemistry , Milk/chemistry , Ubiquinone/analogs & derivatives , Animals , Cattle , Chemistry, Pharmaceutical , Emulsions/chemistry , Particle Size , Ubiquinone/chemistry
5.
Curr Opin Biotechnol ; 18(2): 184-90, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17368017

ABSTRACT

The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.


Subject(s)
Biological Factors/administration & dosage , Biological Factors/chemistry , Capsules/chemical synthesis , Dietary Supplements , Drug Compounding/methods , Drug Delivery Systems/methods , Food Technology/methods , Administration, Oral , Probiotics , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL
...