Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(20): 4102-4110, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712674

ABSTRACT

ABA triblock copolymers can form microphase separated structures where the B blocks form bridges between A domains, leading to reversible networks interesting for a variety of applications such as pressure sensitive adhesives or thermoplastic elastomers. However, a major drawback of these systems is their rapid loss of mechanical properties upon temperature increase. A potential way to circumvent this limitation would be to design ABA triblock copolymers that keep their microphase separation at high temperatures. In this paper, we report on all-soft ABA triblock copolymers having a poly(n-butyl acrylate) (PnBA) central block and poly(heptafluorobutyl acrylate) (PHFBA) outer blocks. By introducing fluorinated units, the incompatibility between the blocks is largely increased, allowing strong segregation between the block domains, which preserve the microphase separation up to high temperatures despite the low glass transition temperature of the blocks, as shown by temperature dependent SAXS measurements. We study the properties of different copolymers, with similar PHFBA volume fractions but different block lengths. Linear shear rheology measurements revealed the presence of a second, low frequency, plateau whose onset and length depend on the PnBA and PHFBA length, respectively. This plateau also persists up to higher temperatures for longer PHFBA blocks.

2.
J Colloid Interface Sci ; 641: 521-538, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36948106

ABSTRACT

HYPOTHESIS: The micellization of block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) is driven by the dehydration of PPO at elevated temperatures. At low concentrations, a viscous solution of isolated micelles is obtained, whereas at higher concentrations, crowding of micelles results in an elastic gel. Alternating PEO-PPO multiblock copolymers are expected to exhibit different phase behavior, with altered phase boundaries and thermodynamics, as compared to PEO-PPO-PEO triblock copolymers (Pluronics®) with equal hydrophobicity, thereby proving the pivotal role of copolymer architecture and molecular weight. EXPERIMENTS: Multiple characterization techniques were used to map the phase behavior as a function of temperature and concentration of PEO-PPO multiblock copolymers (ExpertGel®) in aqueous solution. These techniques include shear rheology, differential and adiabatic scanning calorimetry, isothermal titration calorimetry and light transmittance. The micellar size and topology were studied by dynamic light scattering. FINDINGS: Multiblocks have lower transition temperatures and higher thermodynamic driving forces for micellization as compared to triblocks due to the presence of more than one PPO block per chain. With increasing concentration, the multiblock copolymers in solution gradually evolve into a viscoelastic network formed by soluble bridges in between micellar nodes, whereas hairy triblock micelles jam into liquid crystalline phases resembling an elastic colloidal crystal.

3.
J Am Chem Soc ; 143(5): 2348-2352, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33417442

ABSTRACT

We report on the use of atomic force microscopy (AFM) to identify and characterize an intermediate state in macrocycle shuttling in a hydrogen bonded amide-based molecular shuttle. The [2]rotaxane consists of a benzylic amide macrocycle mechanically locked onto a thread that bears both fumaramide and succinic amide-ester sites, each of which can bind to the macrocycle through up to four intercomponent hydrogen bonds. Using AFM-based single-molecule force spectroscopy, we mechanically triggered the translocation of the ring between the two principal binding sites ("stations") on the axle. Equilibrium fluctuations reveal another interacting site involving the two oxygen atoms in the middle of the thread. We characterized the ring occupancy distribution over time, which confirms the intermediate in both shuttling directions. The study provides evidence of weak hydrogen bonds that are difficult to detect using other methods and shows how the composition of the thread can significantly influence the shuttling dynamics by slowing down the ring motion between the principal binding sites. More generally, the study illustrates the utility that single-molecule experiments, such as force spectroscopy, can offer for elucidating the structure and dynamics of synthetic molecular machines.

4.
Chemistry ; 26(52): 11960-11965, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32378754

ABSTRACT

Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal-organic cages. Two ligands, the bend angles of which are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions, were synthesized and used for self-assembly with Pd2+ . As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M2 (L1)4 , M6 (L2)12 , and M12 (L2)24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen-bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.

5.
Polymers (Basel) ; 11(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31546998

ABSTRACT

The linear and nonlinear rheology of associative colloidal polymer assemblies with metallo-supramolecular interactions is herein studied. Polystyrene-b-poly(tert-butylacrylate) with a terpyridine ligand at the end of the acrylate block is self-assembled into micelles in ethanol, a selective solvent for the latter block, and supramolecularly connected by complexation to divalent metal ions. The dependence of the system elasticity on polymer concentration can be semi-quantitatively understood by a geometrical packing model. For strongly associated (Ni2+, Fe2+) and sufficiently concentrated systems (15 w/v%), any given ligand end-group has a virtually 100% probability of being located in an overlapping hairy region between two micelles. By assuming a 50% probability of intermicellar crosslinks being formed, an excellent prediction of the plateau modulus was achieved and compared with the experimental results. For strongly associated but somewhat more dilute systems (12 w/v%) that still have significant overlap between hairy regions, the experimental modulus was lower than the predicted value, as the effective number of crosslinkers was further reduced along with possible density heterogeneities. The reversible destruction of the network by shear forces can be observed from the strain dependence of the storage and loss moduli. The storage moduli of the Ni2+ and Zn2+ systems at a lower concentration (12 w/v%) showed a rarely observed feature (i.e., a peak at the transition from linear to nonlinear regime). This peak disappeared at a higher concentration (15 w/v%). This behavior can be rationalized based on concentration-dependent network stretchability.

6.
ACS Nano ; 12(8): 8372-8381, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29965727

ABSTRACT

Layer-by-layer (LbL) assembly is an attractive method for protein immobilization at interfaces, a much wanted step for biotechnologies and biomedicine. Integrating proteins in LbL thin films is however very challenging due to their low conformational entropy, heterogeneous spatial distribution of charges, and polyampholyte nature. Protein-polyelectrolyte complexes (PPCs) are promising building blocks for LbL construction owing to their standardized charge and polyelectrolyte (PE) corona. In this work, lysozyme was complexed with poly(styrenesulfonate) (PSS) at different ionic strengths and pH values. The PPCs size and electrical properties were investigated, and the forces driving complexation were elucidated, in the light of computations of polyelectrolyte conformation, with a view to further unravel LbL construction mechanisms. Quartz crystal microbalance and atomic force microscopy were used to monitor the integration of PPCs compared to the one of bare protein molecules in LbL assemblies, and colorimetric assays were performed to determine the protein amount in the thin films. Layers built with PPCs show higher protein contents and hydration levels. Very importantly, the results also show that LbL construction with PPCs mainly relies on standard PE-PE interactions, independent of the charge state of the protein, in contrast to classical bare protein assembly with PEs. This considerably simplifies the incorporation of proteins in multilayers, which will be beneficial for biosensing, heterogeneous biocatalysis, biotechnologies, and medical applications that require active proteins at interfaces.


Subject(s)
Muramidase/chemical synthesis , Static Electricity , Electricity , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Muramidase/chemistry , Muramidase/metabolism , Osmolar Concentration , Polyelectrolytes/chemistry , Polystyrenes/chemistry
7.
J Am Soc Nephrol ; 29(7): 1875-1886, 2018 07.
Article in English | MEDLINE | ID: mdl-29844208

ABSTRACT

Background Osmosis drives transcapillary ultrafiltration and water removal in patients treated with peritoneal dialysis. Crystalloid osmosis, typically induced by glucose, relies on dialysate tonicity and occurs through endothelial aquaporin-1 water channels and interendothelial clefts. In contrast, the mechanisms mediating water flow driven by colloidal agents, such as icodextrin, and combinations of osmotic agents have not been evaluated.Methods We used experimental models of peritoneal dialysis in mouse and biophysical studies combined with mathematical modeling to evaluate the mechanisms of colloid versus crystalloid osmosis across the peritoneal membrane and to investigate the pathways mediating water flow generated by the glucose polymer icodextrin.ResultsIn silico modeling and in vivo studies showed that deletion of aquaporin-1 did not influence osmotic water transport induced by icodextrin but did affect that induced by crystalloid agents. Water flow induced by icodextrin was dependent upon the presence of large, colloidal fractions, with a reflection coefficient close to unity, a low diffusion capacity, and a minimal effect on dialysate osmolality. Combining crystalloid and colloid osmotic agents in the same dialysis solution strikingly enhanced water and sodium transport across the peritoneal membrane, improving ultrafiltration efficiency over that obtained with either type of agent alone.Conclusions These data cast light on the molecular mechanisms involved in colloid versus crystalloid osmosis and characterize novel osmotic agents. Dialysis solutions combining crystalloid and colloid particles may help restore fluid balance in patients treated with peritoneal dialysis.


Subject(s)
Crystalloid Solutions/pharmacokinetics , Dialysis Solutions/pharmacokinetics , Icodextrin/pharmacokinetics , Peritoneum/metabolism , Water/metabolism , Animals , Aquaporin 1/genetics , Biological Transport , Colloids , Computer Simulation , Dialysis Solutions/metabolism , Genotype , Glucose/metabolism , Icodextrin/metabolism , Mice , Models, Theoretical , Osmosis , Peritoneal Dialysis
8.
Nanoscale ; 9(31): 11180-11186, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28749509

ABSTRACT

Localization of the photosensitizer conjugation site in amphiphilic block copolymers is shown to have a great impact on photodynamic therapy efficiency. To this end, an asymmetric multifunctional derivative of the azadipyrromethene boron difluoride chelate (aza-BODIPY) was synthesized and inserted at specific locations in polypeptide-based rod-coil amphiphilic block copolymers. A study of the photophysical properties of the vesicle nanocarriers, obtained by self-assembly of these copolymers, as well as in vitro tests on two cancer cell lines were performed. This study aims at providing guidelines for the optimization of the synthetic design of therapeutic nanomedicines with minimal amounts of photosensitive molecules.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Polymers/chemistry , Boron Compounds , HeLa Cells , Humans , Melanoma, Experimental , Micelles , Peptides
9.
Soft Matter ; 13(5): 1063-1073, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28092386

ABSTRACT

Synthesis of combs with well-entangled backbones and long branches with high densities has always been a challenge. Steric hindrance frequently leads to coupling of chains and structural imperfections that cannot be easily distinguished by traditional characterization methods. Research studies have therefore tried to use a combination of different methods to obtain more information on the actual microstructures. In this work, a grafting-from approach is used to synthesize poly(n-butyl acrylate) combs using atom transfer radical polymerization (ATRP) in three steps including the synthesis of a backbone, cleavage of protecting groups and growth of side branches. We have compared the linear viscoelastic properties theoretically predicted by a time marching algorithm (TMA) tube based model with the measured rheological behaviour to provide a better insight into the actual microstructure formed during synthesis. For combs with branches smaller than an entanglement, no discernible hierarchical relaxation can be distinguished, while for those with longer branches, a high frequency plateau made by entangled branches can be separated from backbone's relaxation. Dilution of the backbone, after relaxation of side branches, may accelerate the final relaxation, while extra friction can delay it especially for longer branches. Such a comparison provides a better assessment of the microstructure formed in combs.

10.
ACS Macro Lett ; 6(4): 468-472, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-35610870

ABSTRACT

We report on mechanically linked polymers containing a single catenane in the middle of the chain. These polymers were synthesized by a simple procedure consisting in "clicking" polymer chains onto a functionalized palladium-templated [2]catenane, allowing the preparation of a variety of mechanically linked polymers. The flexibility of the catenane junction was modulated by removing the Pd ion from the catenane to unlock the macrocycles and increase their mobility. We show that this mobility change has a strong impact on the solid-state properties of the polymers. This is illustrated by studying the glass transition temperature of polystyrene-based polymers and the crystallization behavior of poly(ethylene oxide)-based polymers. Our study proves that a change of flexibility of a single catenane inserted into a polymer chain drastically influences the polymer behavior in the solid state.

11.
Chem Commun (Camb) ; 52(15): 3254, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26837013

ABSTRACT

Correction for 'Catenane-based mechanically-linked block copolymers' by B. Nisar Ahamed et al., Chem. Commun., 2016, DOI: .

12.
Chem Commun (Camb) ; 52(10): 2149-52, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26699198

ABSTRACT

An original strategy for the synthesis of diblock copolymers where the blocks are linked by a catenane junction is described. Starting from a functionalized catenane precursor, our strategy enables the preparation of a variety of copolymers by different techniques such as ROP, ATRP and CuAAC click reaction.

13.
ACS Macro Lett ; 5(12): 1364-1368, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-35651219

ABSTRACT

One of the first examples of supramolecular gels presenting independent dual dynamics is built through a combination of hydrophobic and metal-ligand interactions. The associating building block consists in a water-soluble linear polymer terminated by a short hydrophobic sticker at one end, and a coordinating moiety at the other end. The distinct supramolecular nature of these noninterfering binding motifs allows the dynamics of the hydrogels to be finely tuned in an orthogonal fashion by the application of specific stimuli. Precisely, the solvent-induced plasticization of the hydrophobic associations and the acid-promoted dissociation of the metal-ligand complexes are used to control the network dynamics. By opposition to classically encountered binary gel-sol responses, we demonstrate that the stimuli-induced transition in material properties can be gradual, provided that the material structure is well designed and strong enough.

15.
Int J Mol Sci ; 16(1): 990-1007, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25569082

ABSTRACT

Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks.


Subject(s)
Methacrylates/chemistry , Nylons/chemistry , Cobalt/chemistry , Hydrogels/chemistry , Magnetic Resonance Spectroscopy , Methacrylates/chemical synthesis , Nylons/chemical synthesis , Polymerization , Pyridines/chemistry
16.
Gels ; 1(2): 235-255, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-30674175

ABSTRACT

"Smart" materials have considerably evolved over the last few years for specific applications. They rely on intelligent macromolecules or (supra-)molecular motifs to adapt their structure and properties in response to external triggers. Here, a supramolecular stimuli-responsive polymer gel is constructed from heterotelechelic double hydrophilic block copolymers that incorporate thermo-responsive sequences. These macromolecular building units are synthesized via a three-step controlled radical copolymerization and then hierarchically assembled to yield coordination micellar hydrogels. The dynamic mechanical properties of this particular class of materials are studied in shear flow and finely tuned via temperature changes. Notably, rheological experiments show that structurally reinforcing the micellar network nodes leads to precise tuning of the viscoelastic response and yield behavior of the material. Hence, they constitute promising candidates for specific applications, such as mechano-sensors.

17.
Macromol Rapid Commun ; 36(7): 610-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25491079

ABSTRACT

At the basis of smart self-assembled materials are lying small building blocks that can hierarchically assemble in response to stimuli, e.g., temperature or chemical species. In this context, the synthesis of terpyridine end-capped poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) diblock copolymers via controlled radical copolymerization is reported here. The self-assembly of those copolymers is investigated in dilute aqueous solutions while varying temperature or adding transition metal ions, respectively, leading to the formation of micellar nanostructures or metallosupramolecular triblock copolymers.


Subject(s)
Acrylic Resins/chemical synthesis , Methacrylates/chemical synthesis , Nylons/chemical synthesis , Pyridines/chemistry , Acrylic Resins/chemistry , Methacrylates/chemistry , Nylons/chemistry , Polymerization , Temperature
18.
Soft Matter ; 10(17): 3086-92, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24695908

ABSTRACT

Metallo-supramolecular micellar hydrogels exhibiting thermo-mechanical responsiveness are prepared through the hierarchical assembly of a heterotelechelic associating copolymer. The copolymer consists of a linear thermo-sensitive water-soluble sequence terminated by a short hydrophobic sticker at one end, the other being functionalized by a chelating ligand. As the first level of assembly, the associating copolymer is dissolved in aqueous solution to yield micellar nanostructures, bearing coordinative motifs at the end of the coronal chains. The second level of assembly is achieved when transition metal ions are added to the micellar solutions, resulting in almost instantaneous gelation. The thermo-mechanical response of those materials is investigated in detail by rotational rheometry, showing abrupt changes within the temperature boundaries corresponding to the phase transition of the polymer block located in the micellar corona.

19.
Macromol Rapid Commun ; 34(12): 962-82, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23625791

ABSTRACT

This review deals with nanoporous materials made from the self-assembly of block copolymers with a special interest in the chemical functions covering the surface of their nanopores. A detailed overview of the existing methods and strategies to generate well-defined organic functional groups covering the surface of the pore walls is provided. This further enables to finely tune the affinity of the pore walls and to perform well-defined chemical reactions onto them, which is essential for further dedicated applications.


Subject(s)
Polymers/chemistry , Nanopores/ultrastructure , Polymers/chemical synthesis , Porosity , Surface Properties
20.
Langmuir ; 28(5): 3018-23, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22235922

ABSTRACT

A polystyrene-[Ni(2+)]-poly(ethylene oxide) metallo-supramolecular block copolymer (PS-[Ni(2+)]-PEO), where -[ is a terpyridine, is used to create nanoporous thin films with free terpyridine ligands homogenously distributed on the pore walls. The PS-[Ni(2+)]-PEO block copolymer is synthesized by a two step assembly process, and is then self-assembled into a thin film in order to obtain PEO cylinders oriented perpendicularly to the film surface. The supramolecular junction is opened by exposing the film to an excess of a competing ligand, and the free PEO block is then rinsed away by a selective solvent. The presence of the terpyridines on the pore walls is evidenced by fluorescence spectroscopy after formation of a fluorescent complex with an europium salt.


Subject(s)
Membranes, Artificial , Nanostructures/chemistry , Organometallic Compounds/chemistry , Macromolecular Substances/chemistry , Molecular Structure , Nickel/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...