Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(6): 202, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696051

ABSTRACT

Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.


Subject(s)
Environmental Monitoring , Soil Pollutants , Spectrometry, X-Ray Emission , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , Multivariate Analysis , Environmental Monitoring/methods , Mining , Portugal , Principal Component Analysis , Soil/chemistry , Tin/analysis , Magnetic Phenomena , Coal Mining , Coal
2.
Environ Sci Pollut Res Int ; 27(9): 10103-10114, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31975010

ABSTRACT

The characterization of historical mine tailings provides important information for land-management decisions, in particular when considering potential reprocessing activities or the development of an environmental protection program. In addition, outcomes from such characterization may define the scope for a more detailed investigation. The present work describes the characterization of the waste material from the Cabeço do Pião tailings impoundment performed within the project ReMinE: Improve Resource Efficiency and Minimize Environmental Footprint. The purpose of the work was to investigate alternative mine waste management options such as the extraction of valuable resources from an environmental liability. The study involved the collection of 41 samples at different locations at two different depths, physical and chemical characterization of the wastes, natural leaching tests, and potential for acid generation. The results showed that, apart from the potential instability of the dyke (with an average slope of 35°), the drained solutions flowing by percolation contain very small particles with high arsenic contents that are being incorporated into the river sediments. In addition, these very fine-grained materials are available for the transport by the wind creating secondary sources of environmental contamination. This data is fundamental for economic and environmental assessment of the two main alternatives, reprocessing or removal.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Conservation of Natural Resources , Environmental Pollution/analysis , Metals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...