Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 164: 377-386, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37040812

ABSTRACT

Various peptide amphiphile (PA) molecules have been developed to promote bone regeneration. Previously we discovered that a peptide amphiphile with a palmitic acid tail (C16) attenuates the signaling threshold of leucine-rich amelogenin peptide (LRAP)-mediated Wnt activation by increasing membrane lipid raft mobility. In the current study, we found that treatment of murine ST2 cells with an inhibitor (Nystatin) or Caveolin-1-specific siRNA abolishes the effect of C16 PA, indicating that Caveolin-mediated endocytosis is required. To determine whether hydrophobicity of the PA tail plays a role in its signaling effect, we modified the length of the tail (C12, C16 and C22) or composition (cholesterol). While shortening the tail (C12) decreased the signaling effect, lengthening the tail (C22) had no prominent effect. On the other hand, the cholesterol PA displayed a similar function as the C16 PA at the same concentration of 0.001% w/v. Interestingly, a higher concentration of C16 PA (0.005%) is cytotoxic while cholesterol PA at the higher concentration (0.005%) is well-tolerated by cells. Use of the cholesterol PA at 0.005% enabled a further reduction of the signaling threshold of LRAP to 0.20 nM, compared to 0.25 nM at 0.001%. Caveolin-mediated endocytosis is also required for cholesterol PA, as evidenced by Caveolin-1 siRNA knockdown experiments. We further demonstrated that the noted effects of cholesterol PA are also observed in human bone marrow mesenchymal stem cells (BMMSCs). Taken together, these results indicate that the cholesterol PA modulates lipid raft/caveolar dynamics, thereby increasing receptor sensitivity for activation of canonical Wnt signaling. STATEMENT OF SIGNIFICANCE: Cell signaling involves not only the binding of growth factors (or other cytokines) and cognate receptors, but also their clustering on the cell membrane. However, little or no work has been directed thus far toward investigating how biomaterials can serve to enhance growth factor or peptide signaling by increasing diffusion of cell surface receptors within membrane lipid rafts. Therefore, a better understanding of the cellular and molecular mechanism(s) operating at the material-cell membrane interface during cell signaling has the potential to change the paradigm in designing future biomaterials and regenerative medicine therapeutics. In this study, we designed a peptide amphiphile (PA) with a cholesterol tail to enhance canonical Wnt signaling by modulating lipid raft/caveolar dynamics.


Subject(s)
Caveolin 1 , Membrane Microdomains , Mice , Animals , Humans , Caveolin 1/metabolism , Membrane Microdomains/metabolism , Peptides/pharmacology , Peptides/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Lipids/metabolism , RNA, Small Interfering/metabolism , Cholesterol
2.
Int J Mol Sci ; 21(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365555

ABSTRACT

O-methyl-serine dodecylamine hydrochloride (MSDH) is a detergent that accumulates selectively in lysosomes, a so-called lysosomotropic detergent, with unexpected chemical properties. At physiological pH, it spontaneously forms vesicles, which disassemble into small aggregates (probably micelles) below pH 6.4. In this study, we characterize the interaction between MSDH and liposomes at different pH and correlate the findings to toxicity in human fibroblasts. We find that the effect of MSDH on lipid membranes is highly pH-dependent. At neutral pH, the partitioning of MSDH into the liposome membrane is immediate and causes the leakage of small fluorophores, unless the ratio between MSDH and lipids is kept low. At pH 5, the partitioning of MSDH into the membrane is kinetically impeded since MSDH is charged and a high ratio between MSDH and the lipids is required to permeabilize the membrane. When transferred to cell culture conditions, the ratio between MSDH and plasma membrane lipids must therefore be low, at physiological pH, to maintain plasma membrane integrity. Transmission electron microscopy suggests that MSDH vesicles are taken up by endocytosis. As the pH of the endosomal compartment progressively drops, MSDH vesicles disassemble, leading to a high concentration of increasingly charged MSDH in small aggregates inside the lysosomes. At sufficiently high MSDH concentrations, the lysosome is permeabilized, the proteolytic content released to the cytosol and apoptotic cell death is induced.


Subject(s)
Amides/chemistry , Amides/pharmacology , Detergents/chemistry , Detergents/pharmacology , Lipid Bilayers/adverse effects , Lysosomes/drug effects , Serine/analogs & derivatives , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Endocytosis/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hydrogen-Ion Concentration , Intracellular Membranes/drug effects , Intracellular Membranes/ultrastructure , Lipid Bilayers/chemistry , Lipids/chemistry , Serine/chemistry , Serine/pharmacology
3.
Biochim Biophys Acta Proteins Proteom ; 1867(10): 909-921, 2019 10.
Article in English | MEDLINE | ID: mdl-30935958

ABSTRACT

Misfolding and aggregation of the human prion protein (PrP) cause neurodegenerative transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease. Mature native PrP is composed of 209 residues and is folded into a C-terminal globular domain (residues 125-209) comprising a small two-stranded ß-sheet and three α-helices. The N-terminal domain (residues 23-124) is intrinsically disordered. Expression of truncated PrP (residues 90-231) is sufficient to cause prion disease and residues 90/100-231 is comprising the amyloid-like fibril core of misfolded infectious PrP. During PrP fibril formation under native conditions in vitro, the disordered N-terminal domain slows down fibril formation likely due to a mechanism of initial aggregation forming morphologically disordered aggregates. The morphological disordered aggregate is a transient phase. Nucleation of fibrils occurs from this initial aggregate. The aggregate phase is largely circumvented by seeding with preformed PrP fibrils. In vivo PrP is N-glycosylated at positions Asn181 and Asn197. Little is known about the importance of these positions and their glycans for PrP stability, aggregation and fibril formation. We have in this study taken a step towards that goal by mutating residues 181 and 197 for cysteines to study the positional impact on these processes. We have further by organic synthetic chemistry and chemical modification generated synthetic glycosylations in these positions. Our data shows that residue 181 when mutated to a cysteine is a key residue for self-chaperoning, rendering a trap in the initial aggregate preventing conformational changes towards amyloid fibril formation. Position 197 is less involved in the aggregate trapping and is more geared towards ß-sheet structure conversion within amyloid fibrils. As expected, synthetic glycosylated 197 is less affected towards fibril formation compared to glycosylated 181. Our data are rather compatible with the parallel in-register intermolecular ß-sheet model structure of the PrP90-231 fibril and sheds light on the misfolding transitions of PrP in vitro. We hypothesize that glycosylation of position 181 is a key site for prion strain differentiation in vivo.


Subject(s)
Amyloid/chemistry , Prion Proteins/chemistry , Amyloid/genetics , Amyloid/metabolism , Glycosylation , Humans , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Domains
4.
Nano Lett ; 18(10): 6237-6247, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30211565

ABSTRACT

Brain-derived neurotrophic factor (BDNF), a neurotrophin that binds specifically to the tyrosine kinase B (TrkB) receptor, has been shown to promote neuronal differentiation, maturation, and synaptic plasticity in the central nervous system (CNS) during development or after injury and onset of disease. Unfortunately, native BDNF protein-based therapies have had little clinical success due to their suboptimal pharmacological properties. In the past 20 years, BDNF mimetic peptides have been designed with the purpose of activating certain cell pathways that mimic the functional activity of native BDNF, but the interaction of mimetic peptides with cells can be limited due to the conformational specificity required for receptor activation. We report here on the incorporation of a BDNF mimetic sequence into a supramolecular peptide amphiphile filamentous nanostructure capable of activating the BDNF receptor TrkB and downstream signaling in primary cortical neurons in vitro. Interestingly, we found that this BDNF mimetic peptide is only active when displayed on a peptide amphiphile supramolecular nanostructure. We confirmed that increased neuronal maturation is linked to TrkB signaling pathways by analyzing the phosphorylation of downstream signaling effectors and tracking electrical activity over time. Furthermore, three-dimensional gels containing the BDNF peptide amphiphile (PA) nanostructures encourage cell infiltration while increasing functional maturation. Our findings suggest that the BDNF mimetic PA nanostructure creates a highly bioactive matrix that could serve as a biomaterial therapy in injured regions of the CNS. This new strategy has the potential to induce endogenous cell infiltration and promote functional neuronal maturation through the presentation of the BDNF mimetic signal.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Central Nervous System/drug effects , Neurons/drug effects , Receptor, trkB/genetics , Animals , Biomimetics , Brain-Derived Neurotrophic Factor/administration & dosage , Brain-Derived Neurotrophic Factor/chemistry , Cell Differentiation/drug effects , Central Nervous System/metabolism , Humans , Mice , Nanostructures/administration & dosage , Nanostructures/chemistry , Neurogenesis/drug effects , Neuronal Plasticity/drug effects , Neurons/metabolism , Peptides/chemistry , Peptides/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Signal Transduction/drug effects
5.
Nat Commun ; 9(1): 2395, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921928

ABSTRACT

Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.


Subject(s)
Anisotropy , Hydrogels/chemistry , Muscle, Skeletal/physiology , Nanofibers/chemistry , Polymers/chemistry , Algorithms , Biocompatible Materials/chemistry , Biomechanical Phenomena , Humans , Nanofibers/ultrastructure , Temperature , Thermodynamics
6.
Nat Nanotechnol ; 12(8): 821-829, 2017 08.
Article in English | MEDLINE | ID: mdl-28650443

ABSTRACT

Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal ß-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Glycopeptides/chemistry , Glycopeptides/chemical synthesis , Nanostructures/chemistry , Bone Morphogenetic Protein 2/metabolism , Humans , Protein Structure, Secondary
7.
Langmuir ; 32(50): 13566-13575, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27936755

ABSTRACT

Lysosomotropic detergents (LDs) selectively rupture lysosomal membranes through mechanisms that have yet to be characterized. A consensus view, currently, holds that LDs, which are weakly basic, diffuse across cellular membranes as monomers in an uncharged state, and via protonation in the acidic lysosomal compartment, they become trapped, accumulate, and subsequently solubilize the membrane and induce lysosomal membrane permeabilization. Here we demonstrate that the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) spontaneously assembles into vesicles at, and above, cytosolic pH, and that the vesicles disassemble as the pH reaches 6.4 or lower. The aggregation commences at concentrations below the range of those used in cell studies. Assembly and disassembly of the vesicles was studied via dynamic light scattering, zeta potential measurements, cryo-TEM, and fluorescence correlation spectroscopy and was found to be reversible via control of the pH. Aggregation of MSDH into closed vesicles under cytosolic conditions is at variance with the commonly held view of LD behavior, and we propose that endocytotic pathways should be considered as possible routes of LD entry into lysosomes. We further demonstrate that MSDH vesicles can be loaded with fluorophores via a solution transition from low to high pH, for subsequent release when the pH is lowered again. The ability to encapsulate molecular cargo into MSDH vesicles together with its ability to disaggregate at low pH and to permeabilize the lysosomal membrane presents an intriguing possibility to use MSDH as a delivery system.


Subject(s)
Amides/chemistry , Detergents/chemistry , Intracellular Membranes/chemistry , Lysosomes/chemistry , Serine/analogs & derivatives , Apoptosis , Serine/chemistry
8.
Biofouling ; 31(1): 123-34, 2015.
Article in English | MEDLINE | ID: mdl-25629533

ABSTRACT

The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.


Subject(s)
Biofouling/prevention & control , Diatoms/drug effects , Lactose/chemistry , Ulva/drug effects , Adsorption , Diatoms/physiology , Molecular Structure , Proteins/chemistry , Surface Properties , Ulva/physiology , Wettability
9.
Colloids Surf B Biointerfaces ; 105: 187-93, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23376745

ABSTRACT

The ability to produce monomolecular coatings with well-defined structural and functional properties is of key importance in biosensing, drug delivery, and many recently developed applications of nanotechnology. Organic chemistry has proven to be a powerful tool to achieve this in many research areas. Herein, we present the synthesis of three oligo(lactosides) glycosylated in a (1→3) manner, and which are further functionalized with amide-linked short alkanethiol spacers. The oligosaccharides (di-, tetra-, and hexasaccharide) originate from the inexpensive and readily available lactose disaccharide. These thiolated derivatives were immobilized onto gold surfaces, and the thus formed self-assembled monolayers (SAMs) on planar gold were characterized by wettability, ellipsometry and infrared reflection-absorption spectroscopy. Further, the ability of these SAMs to stabilize gold nanoparticles in saline solutions was also demonstrated, indicating that the oligosaccharides may be used as stabilizing agents in gold nanoparticle-based assays.


Subject(s)
Gold/chemistry , Lactose/chemistry , Metal Nanoparticles/chemistry , Oligosaccharides/chemistry , Sulfhydryl Compounds/chemical synthesis , Spectrophotometry, Infrared , Surface Properties , Wettability
10.
Bioconjug Chem ; 23(6): 1333-40, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22568531

ABSTRACT

When cross-linking biomolecules to surfaces or to other biomolecules, the use of appropriate spacer molecules is of great importance. Mimicking the naturally occurring spacer molecules will give further insight into their role and function, possibly unveil important issues regarding the importance of the specificity of carbohydrate-based anchor moieties, in e.g., glycoproteins and glycosylphosphatidylinositols. Herein, we present the synthesis of a lactoside-based trisaccharide, potentially suitable as a heterobifunctional bioorthogonal linker molecule whereon valuable chemical handles have been conjugated. An amino-derivative having thiol functionality shows promise as novel SPR-surfaces. Furthermore, the trisaccharide has been conjugated to a cholesterol moiety in combination with a fluorophore which successfully assemble on the cell surface in lipid microdomains, possibly lipid-rafts. Finally, a Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) confirms the potential use of oligosaccharides as bioorthogonal linkers in chemical biology.


Subject(s)
Cross-Linking Reagents/chemical synthesis , Glycosides/chemical synthesis , Sulfhydryl Compounds/chemistry , Trisaccharides/chemical synthesis , Alkynes/chemistry , Azides/chemistry , Cell Line , Cholesterol/chemistry , Click Chemistry , Cross-Linking Reagents/chemistry , Cycloaddition Reaction , Fibroblasts/ultrastructure , Fluorescent Dyes/chemistry , Glycosides/chemistry , Humans , Membrane Microdomains/ultrastructure , Microscopy, Confocal , Sulfhydryl Compounds/chemical synthesis , Trisaccharides/chemistry
11.
Langmuir ; 27(24): 15034-47, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22053781

ABSTRACT

We describe the synthesis of a series of mono-, di-, and trisaccharide-functionalized alkanethiols as well as the formation of fouling-resistant self-assembled monolayers (SAMs) from these. The SAMs were characterized using ellipsometry, wetting measurements, and infrared reflection-absorption spectroscopy (IRAS). We show that the structure of the carbohydrate moiety affects the packing density and that this also alters the alkane chain organization. Upon increasing the size of the sugar moieties (from mono- to di- and trisaccharides), the structural qualities of the monolayers deteriorated with increasing disorder, and for the trisaccharide, slow reorganization dynamics in response to changes in the environmental polarity were observed. The antifouling properties of these SAMs were investigated through protein adsorption experiments from buffer solutions as well as settlement (attachment) tests using two common marine fouling species, zoospores of the green macroalga Ulva linza and cypris larvae of the barnacle Balanus amphitrite. The SAMs showed overall good resistance to fouling by both the proteins and the tested marine organisms. To improve the packing density of the SAMs with bulky headgroups, we employed mixed SAMs where the saccharide-thiols are diluted with a filler molecule having a small 2-hydroxyethyl headgroup. This method also provides a means by which the steric availability of sugar moieties can be varied, which is of interest for specific interaction studies with surface-bound sugars. The results of the surface dilution study and the low nonspecific adsorption onto the SAMs both indicate the feasibility of this approach.


Subject(s)
Disinfectants/chemical synthesis , Monosaccharides/chemistry , Oligosaccharides/chemistry , Proteins/antagonists & inhibitors , Spores/drug effects , Sulfhydryl Compounds/chemistry , Thoracica/drug effects , Adsorption , Alkanes/chemistry , Animals , Binding Sites , Disinfectants/metabolism , Disinfectants/pharmacology , Protein Binding/drug effects , Proteins/metabolism , Refractometry , Spectrophotometry, Infrared , Spectrum Analysis , Spores/growth & development , Thoracica/physiology , Ulva/drug effects , Ulva/growth & development , Wettability
12.
J Exp Biol ; 213(Pt 10): 1619-24, 2010 May.
Article in English | MEDLINE | ID: mdl-20435811

ABSTRACT

Olfaction may play an important role in regulating bird behavior, and has been suggested to be involved in feather-pecking. We investigated possible differences in the body odors of red junglefowl females by using an automated olfactometer which assessed the ability of trained mice to discriminate between the odors of uropygial gland secretions (the main carrier of potential individual odors in chickens) of six feather-pecked and six non-pecked birds. All mice were clearly able to discriminate between all individual red junglefowl odors, showing that each bird has an individual body odor. We analyzed whether it was more difficult to discriminate between the odors of two feather-pecked, or two non-pecked birds, than it was to discriminate between the odors of two randomly selected birds. This was not the case, suggesting that feather-pecked birds did not share a common odor signature. Analyses using gas chromatography and mass spectrometry showed that the composition of aliphatic carboxylic acids in uropygial gland secretions differed consistently between individuals. However, chemical composition did not vary according to feather-pecking status. We conclude that red junglefowl have individual body odors which appear to be largely based on differences in the relative abundance of aliphatic carboxylic acids, but there is no evidence of systematic differences between the body odors of pecked and non-pecked birds.


Subject(s)
Chickens/physiology , Odorants/analysis , Animal Structures/metabolism , Animals , Cluster Analysis , Female , Gas Chromatography-Mass Spectrometry , Mice , Physical Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...