Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 7829, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837262

ABSTRACT

Optomechanical crystal cavities (OMC) have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of OMCs operating under ambient conditions as a sensor of submicrometer particles by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region. OMCs have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, viruses and bacteria.

2.
Nanotechnology ; 30(4): 045709, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30485250

ABSTRACT

Periodic materials with sub-micrometer characteristic length scale can provide means for control of propagation of hypersonic phonons. In addition to propagation stopbands for the acoustic phonons, distinct dispersive modes can reveal specific thermal and mechanical behavior under confinement. Here, we employ both experimental and theoretical methods to characterize the phonon dispersion relation (frequency versus wave vector). We employed Brillouin light scattering (BLS) spectroscopy to record the phonon dispersion in stratified multilayer polymer films. These films consist of 4-128 alternate polycarbonate (PC) and poly (methyl methacrylate) (PMMA) layers along and normal to the periodicity direction. The distinct direction-dependent phonon propagation was theoretically accounted for, by considering the polarization, frequency and intensity of the observed modes in the BLS spectra. Layer-guiding was also supported by the glass transition temperatures of the PC and PMMA layers. The number of phonon dispersion branches increased with the number of layers but only a few branches were observable by BLS. Introduction of an additional in-plane periodicity, through a permanent wrinkling of the smooth PC/PMMA films, had only subtle consequences in the phonon propagation. Using the frequencies of the periodicity induced modes and momentum conservation equation we were able to precisely back calculate the wrinkle periodicity. However, a wrinkling-induced acoustic stopband utilizing flexible layered materials is still a challenge.

3.
Sci Rep ; 8(1): 16986, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451903

ABSTRACT

Polymers with nanoparticle inclusions are attractive materials because physical properties can be tuned by varying size and volume fraction range. However, elastic behavior can degrade at higher inclusion fractions when particle-particle contacts become important, and sophisticated measurement techniques are required to study this crossover. Here, we report on the mechanical properties of materials with BaTiO3 nanoparticles (diameters < 10 nm) in a polymer (poly(methyl methacrylate)) matrix, deposited as films in different thickness ranges. Two well-known techniques, time and frequency domain Brillouin light scattering, were employed to probe the composition dependence of their elastic modulus. The time domain experiment revealed the biphasic state of the system at the highest particle volume fraction, whereas frequency domain Brillouin scattering provided comprehensive information on ancillary variables such as refractive index and directionality. Both techniques prove complementary, and can in particular be used to probe the susceptibility of elastic properties in polymer nanocomposites to aging.

4.
J Phys Chem B ; 122(27): 6995-7001, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29890076

ABSTRACT

The formation of permanent structures upon mild red laser illumination in transparent polydiene solutions is examined in the case of gem-dichlorocyclopropanated polybutadiene ( gDCC-PB) polymers bearing 15% functional units of the dichlorocyclopropane groups. The response was found to be distinct from the precursor PB. Whereas fiber-like patterns were clearly observed in both precursor and gDCC-PB solutions in cyclohexane, these were absent in the case of gDCC-PB/chloroform but were present in the precursor PB/chloroform solutions. The involved mechanical stresses were not sufficient for the gDCC activation to be detected by NMR spectroscopy. Remarkably, addition of even 10 wt % gDCC-PB into the latter solution sufficed to suppress the light-induced patterning. The importance of the chemical environment on the response to light irradiation was further checked and confirmed by use of other PB copolymers. Different diameter patterns and kinetics were observed. The strong solvent and comonomer mediated effect was reflected neither in solvency nor in optical polarizability differences of the polymers solvent couples.

5.
J Phys Chem B ; 121(29): 7180-7189, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28613878

ABSTRACT

When exposed to weak visible laser light, solutions of common polymers like poly(isoprene) and poly(butadiene) respond by local concentration variations, which in turn lead to refractive index changes. Various micropatterns have been recently reported, depending mostly on the solvent environment and the irradiation conditions. Here, we focused on the simpler case of single polymer-rich filaments and we employed phase contrast microscopy to systematically investigate the influence of laser illumination and material parameters on the kinetics of the optically induced local concentration increase in the polydiene solutions. The refractive index contrast of the formed filaments increased exponentially with the laser illumination time. The growth rate exhibited linear dependence on the laser power and increased with polymer chain length in semidilute solutions in good solvents. On the contrary, the kinetics of the formed filaments appeared to be rather insensitive to the polymer concentration. Albeit the origin of the peculiar light field-polymer concentration coupling remains yet elusive, the new phenomenology is considered necessary for the elucidation of its mechanism.

6.
J Chem Phys ; 146(20): 203325, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571385

ABSTRACT

Determination of the anisotropic mechanical properties of nanostructured hybrid films is of great importance to improve fabrication and to enable reliable utility. Here, we employ spontaneous Brillouin light spectroscopy to record the phononic dispersion relation along the two symmetry directions in a supported PMMA (poly(methylmethacrylate))-BaTiO3 hybrid superlattice (SL) with a lattice constant of about 140 nm. Several dispersive elastic modes are resolved for in-plane wave propagation, whereas along the periodicity direction the SL opens a wide propagation stop band for hypersonic phonons and near UV photons both centered at about 280 nm. A thorough theoretical analysis based on the finite element method quantitatively captures the band diagrams along the two main symmetry directions, helps identify the large density mismatch effect on the unexpectedly low sound phase velocity, and reveals significant anisotropy of the SL elastic tensor. Phonon propagation is a sensitive index of the structure, density, and the mechanical moduli of nanocomposite films.

7.
Nanoscale ; 9(8): 2739-2747, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28045161

ABSTRACT

Determination of the mechanical properties of nanostructured soft materials and their composites in a quantitative manner is of great importance to improve the fidelity in their fabrication and to enable the subsequent reliable utility. Here, we report on the characterization of the elastic and photoelastic parameters of a periodic array of nanowalls (grating) by the non-invasive Brillouin light scattering technique and finite element calculations. The resolved elastic vibrational modes in high and low aspect ratio nanowalls reveal quantitative and qualitative differences related to the two-beam interference lithography fabrication and subsequent aging under ambient conditions. The phononic properties, namely the dispersion relations, can be drastically altered by changing the surrounding material of the nanowalls. Here we demonstrate that liquid infiltration turns the phononic function from a single-direction phonon-guiding to an anisotropic propagation along the two orthogonal directions. The susceptibility of the phononic behavior to the infiltrating liquid can be of unusual benefits, such as sensing and alteration of the materials under confinement.

8.
Nat Commun ; 6: 8309, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26390851

ABSTRACT

The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

9.
Phys Rev Lett ; 106(17): 175505, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21635048

ABSTRACT

Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.

10.
Nano Lett ; 10(3): 980-4, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20141118

ABSTRACT

We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.


Subject(s)
Crystallization/methods , Models, Chemical , Silicon Dioxide/chemistry , Computer Simulation , Microwaves , Photons , Scattering, Radiation
11.
J Chem Phys ; 132(7): 074906, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20170250

ABSTRACT

The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.


Subject(s)
Glass/chemistry , Spectrum Analysis/methods , Transition Temperature , Hemiterpenes/chemistry , Latex/chemistry , Models, Chemical , Molecular Dynamics Simulation , Molecular Weight , Polymers/chemistry , Polypropylenes/chemistry , Spectrum Analysis/instrumentation , Stereoisomerism , Terphenyl Compounds/chemistry
12.
J Colloid Interface Sci ; 340(1): 42-5, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19765719

ABSTRACT

We utilize Brillouin light scattering to investigate the shape-persistence of polystyrene-silica core-shell particles by recording their vibrational eigenmodes as a function of temperature. The thin silica shell (tens of nm) protects the polymer core from changing its spherical shape at temperatures above its glass transition temperature Tg, readily obtained from the same experiment. The rigidity of the confined core is enhanced compared to the bare core.

13.
J Chem Phys ; 130(11): 111102, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19317524

ABSTRACT

We show that self-ordered anodic aluminum oxide containing hexagonal arrays of cylindrical nanopores with submicron periodicity is a versatile model system for the exploration of rich phononic phenomena at gigahertz frequencies, which are intimately linked to fluids located in the nanopores and their interactions with the pore walls. Using high-resolution Brillouin spectroscopy we report the first realization of directional flow of elastic energy parallel and perpendicular to the pore axes, phonon localization, and tunability of the phononic band structure.

14.
Nano Lett ; 8(10): 3194-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18767884

ABSTRACT

We report on the first measurement of elastic vibrational modes in core-shell spheres (silica-poly(methyl methacrylate), SiO2-PMMA) and corresponding spherical hollow capsules (PMMA) with different particle size and shell thickness using Brillouin light scattering, supported by numerical calculations. These localized modes allow access to the mechanical moduli down to a few tens of nanometers. We observe reduced mechanical strength of the porous silica core, and for the core-shell spheres a striking increase of the moduli in both the SiO2 core and the PMMA shell. The peculiar behavior of the vibrational modes in the hollow capsules is attributed to antagonistic dependence on overall size and layer thickness in agreement with theoretical predictions.

15.
Phys Rev Lett ; 100(19): 194301, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18518452

ABSTRACT

We report on the observation of two hypersonic phononic gaps of different nature in three-dimensional colloidal films of nanospheres using Brillouin light scattering. One is a Bragg gap occurring at the edge of the first Brillouin zone along a high-symmetry crystal direction. The other is a hybridization gap in crystalline and amorphous films, originating from the interaction of the band of quadrupole particle eigenmodes with the acoustic effective-medium band, and its frequency position compares well with the computed lowest eigenfrequency. Structural disorder eliminates the Bragg gap, while the hybridization gap is robust.

16.
Eur Phys J E Soft Matter ; 26(1-2): 35-41, 2008.
Article in English | MEDLINE | ID: mdl-18473116

ABSTRACT

The diffusion of dilute colloids in contact with swollen polymer brushes has been studied by evanescent wave dynamic light scattering. Two polystyrene nanogels with 16 nm and 42 nm radius were put into contact with three polystyrene brushes with varying grafting densities. Partial penetration of the nanogels within the brushes was revealed by the evanescent wave penetration depth-dependent scattering intensities. The experimental short-time diffusion coefficients of the penetrating particles were measured and found to strongly slow down as the nanoparticles get deeper into the brushes. The slow down is much more marked for the smaller (16 nm) nanogels, suggesting a size exclusion type of mechanism and the existence of a characteristic length scale present in the outer part of the brush.

17.
J Phys Chem B ; 112(21): 6542-9, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18461906

ABSTRACT

The dynamics of the amphiphilic semifluorinated F(CF2)12(CH2)12H (F12H12) alkane that undergoes two condensed phase transitions have been investigated by Brillouin light spectroscopy, shear rheometry, small- (SAXS) and wide-angle (WAXS) X-ray scattering, and thermodynamic PVT measurements. The solid (I)-solid (II) transition (Ts) is marked by a stronger temperature dependence of the sound velocity in phase II and by a 2 orders of magnitude drop of the shear modulus. Between the Ts and the melting transition (Tm), the presence of two phonons implies a coexistence of solid (II) and amorphous (liquid) regions in the submicrometer range at thermal equilibrium as revealed by the SAXS pattern of a single reflection superimposed on a very broad amorphous halo. This intriguing finding of a transient, very slow (over 10 h) solid/liquid coexistence within phase II is rationalized by a two-stage mechanism for melting of the smectic phase (II) of F12H12. A refinement of the known packing motifs for the two solid-state structures is proposed.


Subject(s)
Nanotechnology , Thermodynamics , Calorimetry, Differential Scanning , Rheology , Scattering, Radiation
18.
Nano Lett ; 8(5): 1423-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18363344

ABSTRACT

We report on the first systematic study of phonon propagation in nanostructured composite polymer multilayer films as a function of periodicity and composition using Brillouin light scattering and numerical simulations. The high sensitivity of phonon dispersion to structure and composition allows the probing of the mechanical properties down to the single-layer level. We observe a strikingly different dependence of the longitudinal and shear moduli on confinement effects in the polymer nanolayers. In addition, temperature dependent measurements of sound velocities reveal the presence of distinct glass transition temperatures, indicative of phonon localization in films with large layer thicknesses in agreement with theoretical predictions.


Subject(s)
Membranes, Artificial , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Polymers/chemistry , Computer Simulation , Elasticity , Hardness , Materials Testing , Particle Size , Stress, Mechanical , Vibration
19.
Langmuir ; 23(9): 5139-42, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17367177

ABSTRACT

In an effort to control particle diffusion near surfaces, we have studied the dynamics of colloidal hard spheres and soft compliant star copolymers on surfaces coated with polymer brushes using evanescent wave dynamic light scattering. The same experiments provide information on the brush structure and confined particle motion. The penetration into dense polydisperse brushes is size- and solvent-dependent.


Subject(s)
Polystyrenes/chemistry , Diffusion , Particle Size , Surface Properties , Time Factors
20.
J Chem Phys ; 126(1): 014707, 2007 Jan 07.
Article in English | MEDLINE | ID: mdl-17212511

ABSTRACT

The phononic band structure of two binary colloidal crystals, at hypersonic frequencies, is studied by means of Brillouin light scattering and analyzed in conjunction with corresponding dispersion diagrams of the single colloidal crystals of the constituent particles. Besides the acoustic band of the average medium, the authors' results show the existence of narrow bands originating from resonant multipole modes of the individual particles as well as Bragg-type modes due to the (short-range) periodicity. Strong interaction, leading to the occurrence of hybridization gaps, is observed between the acoustic band and the band of quadrupole modes of the particles that occupy the largest fractional volume of the mixed crystal; the effective radius is either that of the large (in the symmetric NaCl-type crystalline phase) or the small (in the asymmetric NaZn(13)-type crystalline phase) particles. The possibility to reveal a universal behavior of the phononic band structure for different single and binary colloidal crystalline suspensions, by representing in the dispersion diagrams reduced quantities using an appropriate length scale, is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...