Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 114(11): 4365-4375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37706278

ABSTRACT

PTEN and PIK3CA mutations are the most prevalent PI3K pathway alterations in prostate, breast, colorectal, and endometrial cancers. p110ß becomes the prominent PI3K isoform upon PTEN loss. In this study, we aimed to understand the molecular mechanisms of PI3K dependence in the absence of PTEN. Using online bioinformatical tools, we examined two publicly available microarray datasets with aberrant PI3K activation. We found that the rate-limiting enzyme of cholesterol biogenesis, SQLE, was significantly upregulated in p110ß-hyperactivated or PTEN-deficient mouse prostate tumors. Concomitantly, the expression of cholesterol biosynthesis pathway enzymes was directly correlated with PI3K activation status in microarray datasets and diminished upon PTEN re-expression in PTEN-null prostate cancer cells. Particularly, PTEN re-expression decreased SQLE protein levels in PTEN-deficient prostate cancer cells. We performed targeted metabolomics and detected reduced levels of cholesteryl esters as well as free cholesterol upon PTEN re-expression. Notably, PTEN-null prostate and breast cancer cell lines were more sensitive to pharmacological intervention with the cholesterol pathway than PTEN-replete cancer cells. Since steroid hormones use sterols as structural precursors, we studied whether cholesterol biosynthesis may be a metabolic vulnerability that enhances antihormone therapy in PTEN-null castration-resistant prostate cancer cells. Coinhibition of cholesterol biosynthesis and the androgen receptor enhanced their sensitivity. Moreover, PTEN suppression in endocrine therapy-resistant luminal-A breast cancer cells leads to an increase in SQLE expression and a corresponding sensitization to the inhibition of cholesterol synthesis. According to our data, targeting cholesterol biosynthesis in combination with the hormone receptor signaling axis can potentially treat hormone-resistant prostate and breast cancers.


Subject(s)
Endometrial Neoplasms , Prostatic Neoplasms , Humans , Male , Female , Animals , Mice , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Hormones , PTEN Phosphohydrolase/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism
2.
Methods Mol Biol ; 2520: 275-294, 2022.
Article in English | MEDLINE | ID: mdl-34661879

ABSTRACT

With their unique capabilities of self-renewal and differentiation into three germ layers, mouse embryonic stem cells (mESCs) are widely used as an in vitro cellular model for early mammalian developmental studies. mESCs are traditionally cultured in high-serum and LIF-containing medium on a growth-deficient mouse embryonic fibroblast layer. A more recent culturing system with two inhibitors (for GSK3ß (CHIR99021) and MEK1/2 (PD0325901)) and LIF enables the derivation of mESC lines from various mouse strains. Here we describe methods for the mESC growth and maintenance in each medium composition as well as their adaptation to either condition.


Subject(s)
Fibroblasts , Mouse Embryonic Stem Cells , Animals , Benzamides/pharmacology , Cell Differentiation , Mammals , Mice , Serum
3.
Turk J Biol ; 45(1): 56-64, 2021.
Article in English | MEDLINE | ID: mdl-33597822

ABSTRACT

Cell division and death play an important role in embryonic development. Cell specialization is accompanied with slow proliferation and quiescence. Cell death is important for morphogenesis. Gene expression changes during differentiation is coordinated by lineage-specific transcription factors and chromatin factors. It is not yet fully understood how alterations in gene expression and cell cycle/death mechanisms are connected. We previously identified a chromatin protein Arid4b as a critical factor for meso/endoderm differentiation of mouse embryonic stem cells (mESCs). The differentiation defect of Arid4b-deficient mESCs might be due to misregulation of cell proliferation or death. Here, we identified a role for Arid4b in cell cycle rewiring at the onset of differentiation. Arid4b-deficient differentiating cells have less proliferative capacity and their cell cycle profile is more similar to mESC stage than the differentiating wild-type cells. We found no evidence of increased DNA damage or checkpoint activation. Our investigation of cell death mechanisms found no contribution from autophagy but revealed a slight increase in Caspase-3 activation implying early apoptosis in Arid4b-deficient differentiating cells. Taken together, our data suggest Arid4b regulates cell cycle alterations during exit from pluripotency. Future studies will be instrumental in understanding whether these changes directly contribute to Arid4b-dependent differentiation control.

SELECTION OF CITATIONS
SEARCH DETAIL
...