Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Res ; 65(6): 1045-1051, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27959577

ABSTRACT

Several studies have shown that diabetes mellitus modulates heart resistance to ischemia and abrogates effectivity of cardioprotective interventions, such as ischemic preconditioning (IP). The aim of this study was to evaluate whether the effect of hyperglycemic conditions on the severity of ischemia-reperfusion (I/R) injury in preconditioned and non-preconditioned hearts (controls, C) is related to changes in osmotic activity of glucose. Experiments were performed in isolated rat hearts perfused according to Langendorff exposed to 30-min coronary occlusion/120-min reperfusion. IP was induced by two cycles of 5-min coronary occlusion/5-min reperfusion, prior to the long-term I/R. Hyperosmotic (HO) state induced by an addition of mannitol (11 mmol/l) to a standard Krebs-Henseleit perfusion medium significantly decreased the size of infarction and also suppressed a release of heart fatty acid binding protein (h-FABP - biomarker of cell injury) from the non-IP hearts nearly to 50 %, in comparison with normoosmotic (NO) mannitol-free perfusion. However, IP in HO conditions significantly increased the size of infarction and tended to elevate the release of h-FABP to the effluent from the heart. The results indicate that HO environment plays a cardioprotective role in the ischemic myocardium. On the other hand, increased osmolarity, similar to that in the hyperglycemic conditions, may play a pivotal role in a failure of IP to induce cardioprotection in the diabetic myocardium.


Subject(s)
Heart/physiopathology , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/prevention & control , Osmolar Concentration , Animals , Cellular Microenvironment , Coronary Circulation , Glucose Solution, Hypertonic/pharmacology , Hyperglycemia/physiopathology , In Vitro Techniques , Male , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Wistar
2.
Physiol Res ; 64(Suppl 5): S685-96, 2015.
Article in English | MEDLINE | ID: mdl-26674286

ABSTRACT

Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.


Subject(s)
Aging/metabolism , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Adaptation, Physiological , Age Factors , Aging/pathology , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Coronary Circulation , Disease Models, Animal , Heart Rate , Isolated Heart Preparation , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Protein Kinase C-epsilon/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Recovery of Function , Signal Transduction , Time Factors , Ventricular Function, Left , Ventricular Pressure
3.
Physiol Res ; 64(5): 633-41, 2015.
Article in English | MEDLINE | ID: mdl-25804103

ABSTRACT

The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non-preconditioned isolated rat hearts perfused with Krebs-Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia-reperfusion. Ischemic preconditioning (IP) was induced by two 5-min cycles of coronary occlusion followed by 5-min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and after 30-min global ischemia and 40-min reperfusion. In "normoglycemic" conditions (NG), IP significantly increased P-Akt at the end of long-term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non-preconditioned hearts. On the contrary, under HG conditions, P-Akt tended to decline in IP-hearts after long-term ischemia, and it was significantly higher after reperfusion than in non-preconditioned controls. No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions. It seems that high glucose may influence IP-induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions.


Subject(s)
Hyperglycemia/metabolism , Hyperglycemia/therapy , Ischemic Preconditioning, Myocardial , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Blood Glucose/metabolism , Ischemic Preconditioning, Myocardial/methods , Male , Rats , Rats, Wistar , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...