Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 567
Filter
1.
Mod Pathol ; : 100533, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852813

ABSTRACT

Multiple system atrophy (MSA) is a neurodegenerative disorder with variable disease course and distinct constellations of clinical (cerebellar (MSA-C) or parkinsonism (MSA-P)) and pathological phenotypes, suggestive of distinct α-synuclein (αSyn) strains. Neuropathologically, MSA is characterized by the accumulation of αSyn in oligodendrocytic glial cytoplasmic inclusions (GCI). Using a novel computer-based method, this study quantified the size of GCIs, density of all αSyn pathology, density of only the GCIs, and number of GCIs in MSA cases (n = 20). The putamen and cerebellar white matter (WM) were immuno-stained with the disease-associated 5G4 anti-αSyn antibody. Following digital scanning and image processing, total 5G4-immunoreactive pathology (i.e., neuronal, neuritic, and glial) and GCIs were optically dissected for inclusion size and density measurement then evaluated applying a novel computer-based method using ImageJ. GCI size varied between cases and brain regions (p < 0.0001) and heterogeneity in the density of all αSyn pathology including the density and number of GCIs were observed between regions and across cases, where MSA-C cases had significantly higher density of all αSyn pathology in the cerebellar WM (p = 0.049). Some region-specific morphological variables inversely correlated with the age of onset and death, suggestive of an underlying aging-related cellular mechanism. Unsupervised K-means cluster analysis classified MSA cases into three distinct groups based on region-specific morphological variables. In conclusion, we developed a novel computer-based method that is easily accessible, providing a first step to developing artificial-intelligence-based evaluation strategies for large scale comparative studies. Our observations on the variability of morphological variables between brain regions and cases highlight i) the importance of computer-based approaches to detect features not considered in the routine diagnostic practice, and ii) novel aspects for the identification of previously unrecognized MSA subtypes that do not necessarily reflect the current clinical classification of MSA-C or MSA-P.

2.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839023

ABSTRACT

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Nerve Tissue Proteins , Oligodendroglia , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , Aged , Female , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Aged, 80 and over
3.
Mov Disord ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847384

ABSTRACT

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Brain Commun ; 6(3): fcae141, 2024.
Article in English | MEDLINE | ID: mdl-38712319

ABSTRACT

Multiple system atrophy is a neurodegenerative disease with α-synuclein pathology predominating in the striatonigral and olivopontocerebellar systems. Mixed pathologies are considered to be of low frequency and mostly comprise primary age-related tauopathy or low levels of Alzheimer's disease-related neuropathologic change. Therefore, the concomitant presence of different misfolded proteins in the same brain region is less likely in multiple system atrophy. During the neuropathological evaluation of 21 consecutive multiple system atrophy cases, we identified four cases exhibiting an unusual discrepancy between high Thal amyloid-ß phase and low transentorhinal Braak neurofibrillary tangle stage. We mapped α-synuclein pathology, measured the size and number of glial cytoplasmic inclusions and compared the amyloid-ß peptides between multiple system atrophy and Alzheimer's disease. In addition, we performed α-synuclein seeding assay from the affected putamen samples. We performed genetic testing for APOE, MAPT, PSEN1, PSEN2 and APP. We refer to the four multiple system atrophy cases with discrepancy between amyloid-ß and tau pathology as 'amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy' to distinguish these from multiple system atrophy with primary age-related tauopathy or multiple system atrophy with typical Alzheimer's disease neuropathologic change. As most multiple system atrophy cases with mixed pathologies reported in the literature, these cases did not show a peculiar clinical or MRI profile. Three amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy cases were available for genetic testing, and all carried the APOE ɛ4 allele. The extent and severity of neuronal loss and α-synuclein pathology were not different compared with typical multiple system atrophy cases. Analysis of amyloid-ß peptides revealed more premature amyloid-ß plaques in amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy compared with Alzheimer's disease. α-Synuclein seeding amplification assay showed differences in the kinetics in two cases. This study highlights a rare mixed pathology variant of multiple system atrophy in which there is an anatomical meeting point of amyloid-ß and α-synuclein, i.e. the striatum or cerebellum. Since biomarkers are entering clinical practice, these cases will be recognized, and the clinicians have to be informed that the prognosis is not necessarily different than in pure multiple system atrophy cases but that the effect of potential α-synuclein-based therapies might be influenced by the co-presence of amyloid-ß in regions where α-synuclein also aggregates. We propose that mixed pathologies should be interpreted not only based on differences in the clinical phenotype but also on whether protein depositions regionally overlap, potentially leading to a different response to α-synuclein-targeted therapies.

5.
Neurobiol Dis ; 197: 106535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761956

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS: Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS: MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS: Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.


Subject(s)
Iron , Multiple System Atrophy , alpha-Synuclein , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Iron/metabolism , Male , Aged , Female , Middle Aged , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Aged, 80 and over , Oligodendroglia/metabolism , Oligodendroglia/pathology
6.
Neuropathol Appl Neurobiol ; 50(2): e12978, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634242

ABSTRACT

AIMS: Hirano bodies (HBs) are eosinophilic pathological structures with two morphological phenotypes commonly found in the hippocampal CA1 region in Alzheimer's disease (AD). This study evaluated the prevalence and distribution of HBs in AD and other neurodegenerative diseases. METHODS: This cross-sectional study systematically evaluated HBs in a cohort of 193 cases with major neurodegenerative diseases, including AD (n = 91), Lewy body disease (LBD, n = 87), progressive supranuclear palsy (PSP, n = 36), multiple system atrophy (MSA, n = 14) and controls (n = 26). The prevalence, number and morphology of HBs in the stratum lacunosum (HBL) and CA1 pyramidal cell layer were examined. In addition, we investigated the presence of HBs in five additional hippocampal subregions. RESULTS: The morphological types of HBs in CA1 were divided into three, including a newly discovered type, and were evaluated separately, with their morphology confirmed in three dimensions: (1) classic rod-shaped HB (CHB), (2) balloon-shaped HB (BHB) and the newly described (3) string-shaped HB (SHB). The prevalence of each HB type differed between disease groups: Compared with controls, for CHB in AD, AD + LBD, PSP and corticobasal degeneration, for BHB in AD + LBD and PSP, and SHB in AD + LBD and PSP were significantly increased. Regression analysis showed that CHBs were independently associated with higher Braak NFT stage, BHBs with LBD and TDP-43 pathology, SHBs with higher Braak NFT stage, PSP and argyrophilic grain disease and HBLs with MSA. CONCLUSIONS: This study demonstrates that HBs are associated with diverse neurodegenerative diseases and shows that morphological types appear distinctively in various conditions.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Multiple System Atrophy , Supranuclear Palsy, Progressive , Humans , Cross-Sectional Studies , Alzheimer Disease/pathology , Lewy Body Disease/pathology , Supranuclear Palsy, Progressive/pathology
7.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Article in English | MEDLINE | ID: mdl-38631765

ABSTRACT

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Subject(s)
Pick Disease of the Brain , Tauopathies , Female , Humans , Male , Genetic Association Studies , Haplotypes , Pick Disease of the Brain/genetics , tau Proteins/genetics
8.
Parkinsonism Relat Disord ; 123: 106955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677215

ABSTRACT

BACKGROUND: Progressive Supranuclear Palsy (PSP) is a sporadic neurodegenerative disease without a clear geographic prevalence. Cohorts studied in the UK and India showed no higher prevalence of atypical parkinsonism in South Asian patients. We describe the ethnic and racial background of PSP patients in the Greater Toronto Area (GTA), Canada. METHODS: A prospective observational study of patients with clinically probable PSP evaluated at the dedicated Rossy PSP program. Demographic and clinical data were collected at baseline including PSP phenotype. Results were compared with the latest demographic information from the greater Toronto area. RESULTS: Of the 197 patients screened, 135 had probable PSP and resided within the GTA. The mean age at visit was 71.1 years, disease duration 4.4 years, and disease severity moderate. Compared to our catchment area, there was a higher proportion of patients with a South Asian origin and a lower proportion of patients from East and Southeastern Asia and Africa. A secondary analysis using population census data limited to individuals greater than 65 confirmed the significantly higher representation of South Asians in our clinic but found no differences for other racial and ethnic origins. CONCLUSION: Evaluation of this Toronto cohort found a greater than expected proportion of affected individuals with South Asian ethnic and racial origin. Despite limitations, our results suggest the possibility of a racial and ethnic predisposition to PSP. Further studies are needed to confirm and to address potential associated risk factors, and genome-environmental interactions.


Subject(s)
Phenotype , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/ethnology , Male , Female , Aged , Middle Aged , Prospective Studies , Aged, 80 and over , Canada/ethnology , Canada/epidemiology , Ethnicity , Asian People/ethnology
9.
Ann Neurol ; 96(1): 99-109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578117

ABSTRACT

OBJECTIVES: To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS: Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS: Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION: AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.


Subject(s)
Alzheimer Disease , Biomarkers , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Male , Aged , Biomarkers/blood , Middle Aged , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Positron-Emission Tomography , Magnetic Resonance Imaging , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Corticobasal Degeneration/diagnostic imaging , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology
10.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673855

ABSTRACT

Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.


Subject(s)
Iron , Neurodegenerative Diseases , Humans , Iron/metabolism , Neurodegenerative Diseases/metabolism , Animals , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , alpha-Synuclein/metabolism , DNA-Binding Proteins/metabolism , Iron Chelating Agents/therapeutic use
11.
Am J Ophthalmol ; 264: 53-65, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428557

ABSTRACT

PURPOSE: To investigate differences in volume and distribution of the main exudative biomarkers across all types and subtypes of macular neovascularization (MNV) using artificial intelligence (AI). DESIGN: Cross-sectional study. METHODS: An AI-based analysis was conducted on 34,528 OCT B-scans consisting of 281 (250 unifocal, 31 multifocal) MNV3, 55 MNV2, and 121 (30 polypoidal, 91 non-polypoidal) MNV1 treatment-naive eyes. Means (SDs), medians and heat maps of cystic intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachments (PED), and hyperreflective foci (HRF) volumes, as well as retinal thickness (RT) were compared among MNV types and subtypes. RESULTS: MNV3 had the highest mean IRF with 291 (290) nL, RT with 357 (49) µm, and HRF with 80 (70) nL, P ≤ .05. MNV1 showed the greatest mean SRF with 492 (586) nL, whereas MNV3 exhibited the lowest with 218 (382) nL, P ≤ .05. Heat maps showed IRF confined to the center, whereas SRF was scattered in all types. SRF, HRF, and PED were more distributed in the temporal macular half in MNV3. Means of IRF, HRF, and PED were higher in the multifocal than in the unifocal MNV3 with 416 (309) nL,114 (95) nL, and 810 (850) nL, P ≤ .05. Compared to the non-polypoidal subtype, the polypoidal subtype had greater means of SRF with 695 (718) nL, HRF 69 (63) nL, RT 357 (45) µm, and PED 1115 (1170) nL, P ≤ .05. CONCLUSIONS: This novel quantitative AI analysis shows that SRF is a biomarker of choroidal origin in MNV1, whereas IRF, HRF, and RT are retinal biomarkers in MNV3. Polypoidal MNV1 and multifocal MNV3 present with higher exudation compared to other subtypes.

12.
Front Cardiovasc Med ; 11: 1336341, 2024.
Article in English | MEDLINE | ID: mdl-38468724

ABSTRACT

Background: Discordance between coronary angiographic findings and invasive functional significance is well-established. Yet, the prevalence of this mismatch in an era increasingly utilizing invasive functional assessments, such as fractional flow reserve (FFR), remains unclear. This study examines the extent of such discrepancies in current clinical practice. Methods: This single-center prospective registry included consecutive patients with chronic coronary syndrome (CCS) who underwent elective coronary angiography, with or without revascularization. Coronary angiograms deemed not requiring FFR due to clear anatomical distinctions, either anatomically severe indicating a need for revascularization or mild suggesting no need for intervention, were selected for evaluation. These were then subjected to post-hoc analysis by three independent operators who were blinded to the definitive treatment strategies. Importantly, the post-hoc analysis was conducted in two distinct phases: firstly, a re-evaluation of coronary stenosis, and secondly, a separate functional assessment, each carried out independently. Coronary stenosis severity was assessed visually, while functional relevance was determined by quantitative flow ratio (QFR), calculated using a computational fluid dynamics algorithm applied to angiographic images. Analysis focused on discrepancies between QFR-based functional indications and revascularization strategies actually performed. Results: In 191 patients, 488 vessels were analyzed. Average diameter stenosis (DS) was 37 ± 34%, and QFR was 0.87 ± 0.15, demonstrating a moderate correlation (r = -0.84; 95% CI: -0.86 to -0.81, p < 0.01). Agreement with QFR at conventional anatomical cutoffs was 88% for 50% DS and 91% for 70% DS. Mismatches between revascularization decisions and QFR indications occurred in 10% of cases. Discrepancies were more frequent in the left anterior descending artery (14%) compared to the left circumflex (6%) and the right coronary artery (9%; p = 0.07). Conclusion: In a cardiac-center where FFR utilization is high, discordance between coronary angiography and functional significance persists, even when operators are confident in their decisions not to use functional interrogation. This gap, most evident in the left anterior descending artery, highlights the potential need for integrated angiography-based functional assessments to refine revascularization decisions in CCS.

13.
J Clin Med ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541778

ABSTRACT

(1) Background: Mechanical circulatory support (MCS) in myocardial infarction-associated cardiogenic shock is subject to debate. This analysis aims to elucidate the impact of MCS's timing on patient outcomes, based on data from the PREPARE CS registry. (2) Methods: The PREPARE CS prospective registry includes patients who experienced cardiogenic shock (SCAI classes C-E) and were subsequently referred for cardiac catheterization. Our present analysis included a subset of this registry, in whom MCS was used and who underwent coronary intervention due to myocardial infarction. Patients were categorized into an Upfront group and a Procedural group, depending on the timing of MCS's introduction in relation to their PCI. The endpoint was in-hospital mortality. (3) Results: In total, 71 patients were included. MCS was begun prior to PCI in 33 (46%) patients (Upfront), whereas 38 (54%) received MCS during or after the initiation of PCI (Procedural). The groups' baseline characteristics and hemodynamic parameters were comparable. The Upfront group had a higher utilization of the Impella® device compared to extracorporeal membrane oxygenation (67% vs. 33%), while the Procedural group exhibited a balanced use of both (50% vs. 50%). Most patients suffered from multi-vessel disease in both groups (82% vs. 84%, respectively; p = 0.99), and most patients required a complex PCI procedure; the latter was more prevalent in the Upfront group (94% vs. 71%, respectively; p = 0.02). Their rates of complete revascularization were comparable (52% vs. 34%, respectively; p = 0.16). Procedural CPR was significantly more frequent in the Procedural group (45% vs. 79%, p < 0.05); however, in-hospital mortality was similar (61% vs. 79%, respectively; p = 0.12). (4) Conclusions: The upfront implantation of MCS in myocardial infarction-associated CS did not provide an in-hospital survival benefit.

14.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473923

ABSTRACT

Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.


Subject(s)
Lewy Body Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Lewy Body Disease/metabolism , Proteasome Endopeptidase Complex/metabolism , Lipid Metabolism , Ubiquitins/metabolism
15.
JACC Asia ; 4(3): 229-240, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463680

ABSTRACT

Background: Both left ventricular systolic function and fractional flow reserve (FFR) are prognostic factors after percutaneous coronary intervention (PCI). However, how these prognostic factors are inter-related in risk stratification of patients after PCI remains unclarified. Objectives: This study evaluated differential prognostic implication of post-PCI FFR according to left ventricular ejection fraction (LVEF). Methods: A total of 2,965 patients with available LVEF were selected from the POST-PCI FLOW (Prognostic Implications of Physiologic Investigation After Revascularization with Stent) international registry of patients with post-PCI FFR measurement. The primary outcome was a composite of cardiac death or target-vessel myocardial infarction (TVMI) at 2 years. The secondary outcome was target-vessel revascularization (TVR) and target vessel failure, which was a composite of cardiac death, TVMI, or TVR. Results: Post-PCI FFR was independently associated with the risk of target vessel failure (per 0.01 decrease: HRadj: 1.029; 95% CI: 1.009-1.049; P = 0.005). Post-PCI FFR was associated with increased risk of cardiac death or TVMI (HRadj: 1.145; 95% CI: 1.025-1.280; P = 0.017) among patients with LVEF ≤40%, and with that of TVR in patients with LVEF >40% (HRadj: 1.028; 95% CI: 1.005-1.052; P = 0.020). Post-PCI FFR ≤0.80 was associated with increased risk of cardiac death or TVMI in the LVEF ≤40% group and with that of TVR in LVEF >40% group. Prognostic impact of post-PCI FFR for the primary outcome was significantly different according to LVEF (Pinteraction = 0.019). Conclusions: Post-PCI FFR had differential prognostic impact according to LVEF. Residual ischemia by post-PCI FFR ≤0.80 was a prognostic indicator for cardiac death or TVMI among patients with patients with LVEF ≤40%, and it was associated with TVR among patients with patients with LVEF>40%. (Prognostic Implications of Physiologic Investigation After Revascularization with Stent [POST-PCI FLOW]; NCT04684043).

16.
Catheter Cardiovasc Interv ; 103(5): 803-807, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38415818

ABSTRACT

In this paper, a case of an 82-year-old man who was admitted to our department with sever symptomatic degenerative aortic valve stenosis is presented and discussed. After all screening procedures, a successful transfemoral transcatheter aortic valve replacement was performed, but the closure of the femoral access was unsuccessful due to suture-based device failure. We decided to perform a prolonged balloon dilatation and external compression at the bleeding site, but the bleeding did not stop; therefore, an iCover stent graft was implanted from distal radial artery access using slender technique. Following that, the bleeding was stopped, and the patient had an uneventful outcome.


Subject(s)
Aortic Valve Stenosis , Catheterization, Peripheral , Transcatheter Aortic Valve Replacement , Male , Humans , Aged, 80 and over , Treatment Outcome , Hemorrhage/etiology , Catheterization, Peripheral/adverse effects , Catheterization, Peripheral/methods , Stents/adverse effects , Femoral Artery/diagnostic imaging , Femoral Artery/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/complications , Aortic Valve/diagnostic imaging , Aortic Valve/surgery
17.
Eur J Neurol ; 31(6): e16259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404144

ABSTRACT

BACKGROUND AND PURPOSE: Chronic traumatic encephalopathy (CTE) has gained widespread attention due to its association with multiple concussions and contact sports. However, CTE remains a postmortem diagnosis, and the link between clinical symptoms and CTE pathology is poorly understood. This study aimed to investigate the presence of copathologies and their impact on symptoms in former contact sports athletes. METHODS: This was a retrospective case series design of 12 consecutive cases of former contact sports athletes referred for autopsy. Analyses are descriptive and include clinical history as well as the pathological findings of the autopsied brains. RESULTS: All participants had a history of multiple concussions, and all but one had documented progressive cognitive, psychiatric, and/or motor symptoms. The results showed that 11 of the 12 participants had evidence of CTE in the brain, but also other copathologies, including different combinations of tauopathies, and other rare entities. CONCLUSIONS: The heterogeneity of symptoms after repetitive head injuries and the diverse pathological combinations accompanying CTE complicate the prediction of CTE in clinical practice. It is prudent to consider the possibility of multiple copathologies when clinically assessing patients with repetitive head injuries, especially as they age, and attributing neurological or cognitive symptoms solely to presumptive CTE in elderly patients should be discouraged.


Subject(s)
Chronic Traumatic Encephalopathy , Humans , Chronic Traumatic Encephalopathy/pathology , Chronic Traumatic Encephalopathy/complications , Male , Retrospective Studies , Middle Aged , Female , Aged , Adult , Athletic Injuries/complications , Brain Concussion/complications , Brain Concussion/pathology , Athletes , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/complications , Brain/pathology , Brain/diagnostic imaging
18.
J Clin Med ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337511

ABSTRACT

The treatment and burden of patients with severe ischemic heart disease, whether acute or chronic, remain some of the greatest challenges in cardiology [...].

20.
Neurobiol Dis ; 191: 106412, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244935

ABSTRACT

Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.


Subject(s)
Alzheimer Disease , Dementia , TDP-43 Proteinopathies , Male , Humans , Aged, 80 and over , Alzheimer Disease/pathology , tau Proteins/metabolism , Aging/pathology , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...