Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1321191, 2024.
Article in English | MEDLINE | ID: mdl-38455065

ABSTRACT

Introduction: Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods: We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results: Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion: Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.


Subject(s)
MicroRNAs , Pre-Eclampsia , Pregnancy , Infant, Newborn , Humans , Female , Pregnancy Trimester, First , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , MicroRNAs/genetics , Biomarkers , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism
2.
Plant Sci ; 275: 19-27, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30107878

ABSTRACT

RNA quality control systems identify and degrade aberrant mRNAs, thereby preventing the accumulation of faulty proteins. Non-stop decay (NSD) and No-go decay (NGD) are closely related RNA quality control systems that act during translation. NSD degrades mRNAs lacking a stop codon, while NGD recognizes and decays mRNAs that contain translation elongation inhibitory structures. NGD has been intensively studied in yeast and animals but it has not been described in plants yet. In yeast, NGD is induced if the elongating ribosome is stalled by a strong inhibitory structure. Then, the mRNA is cleaved by an unknown nuclease and the cleavage fragments are degraded. Here we show that NGD also operates in plant. We tested several potential NGD cis-elements and found that in plants, unlike in yeast, only long A-stretches induce NGD. These long A-stretches trigger endonucleolytic cleavage, and then the 5' fragments are degraded in a Pelota-, HBS1- and SKI2- dependent manner, while XRN4 eliminates the 3' fragment. We also show that plant NGD operates gradually, the longer the A-stretch, the more efficient the cleavage. Our data suggest that mechanistically NGD is conserved in eukaryotes, although the NGD inducing cis-elements could be different. Moreover, we found that Arabidopsis AtPelota1 functions in both NGD and NSD, while AtPelota2 represses these quality control systems. The function of plant NGD will be discussed.


Subject(s)
RNA Stability , RNA, Messenger/metabolism , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Blotting, Western , Immunoprecipitation , Nonsense Mediated mRNA Decay/genetics , Plants/genetics , Plants/metabolism , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...