Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37218462

ABSTRACT

Translation of mRNAs containing premature termination codons (PTCs) results in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance pathway responsible for detecting PTC containing transcripts. Although the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational and dependent on the ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors but suggested that protein degradation did not depend on the canonical ribosome-quality control (RQC) pathway. A subsequent arrayed screen demonstrated that protein and mRNA branches of NMD rely on a shared recognition event. Our results establish the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a reference for the field to identify and characterize required factors.


Subject(s)
Mammals , Nonsense Mediated mRNA Decay , Animals , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/metabolism
2.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36610997

ABSTRACT

MOTIVATION: Several genomic databases host data and metadata for an ever-growing collection of sequence datasets. While these databases have a shared hierarchical structure, there are no tools specifically designed to leverage it for metadata extraction. RESULTS: We present a command-line tool, called ffq, for querying user-generated data and metadata from sequence databases. Given an accession or a paper's DOI, ffq efficiently fetches metadata and links to raw data in JSON format. ffq's modularity and simplicity make it extensible to any genomic database exposing its data for programmatic access. AVAILABILITY AND IMPLEMENTATION: ffq is free and open source, and the code can be found here: https://github.com/pachterlab/ffq.


Subject(s)
Metadata , Software , Databases, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...