Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 132(1): 736-746, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34152060

ABSTRACT

AIMS: The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time. METHODS AND RESULTS: In order to achieve a proof of concept, mussels were exposed to three concentrations of G. duodenalis cysts and Cryptosporidium parvum/T. gondii oocysts for 21 days, followed by 21 days of depuration in clear water. Then, natural contamination by these protozoa was sought for in wild marine blue mussels along the northwest coast of France to validate their relevance as bioindicators in the field. Our results highlighted that: (a) blue mussels bioaccumulated the parasites for 21 days, according to the conditions of exposure, and parasites could still be detected during the depuration period (until 21 days); (b) the percentage of protozoa-positive M. edulis varied under the degree of protozoan contamination in water; (c) mussel samples from eight out of nine in situ sites were positive for at least one of the protozoa. CONCLUSIONS: The blue mussel M. edulis can bioaccumulate protozoan parasites over long time periods, according to the degree of contamination of waters they are inhabiting, and can highlight recent but also past contaminations (at least 21 days). SIGNIFICANCE AND IMPACT OF THE STUDY: Mytilus edulis is a relevant bioaccumulators of protozoan (oo)cysts in laboratory and field conditions, hence its potential use for monitoring parasite contamination in marine waters.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Mytilus edulis , Animals , Ecosystem , Environmental Biomarkers , Laboratories , Water
2.
J Environ Manage ; 278(Pt 1): 111513, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33113398

ABSTRACT

Nowadays, it is necessary to improve the efficiency of wastewater treatment plant treatments. In this context the use of biofilter species, like Dreissena polymorpha, as a bioremediation tool in wastewater is increasingly highlighted. The innovative aim of this study is to evaluate the zebra mussel survival in the outlet channel of a conventional WWTP to use them as bioremediation tool. For this, mussels were transplanted in the outlet channel for 28 days and different biomarkers were monitored. D. polymorpha is able to maintain itself in good physiological conditions until 21 days, yet at 28 days a high mortality rate (24%), a decrease in filtration efficiency (8/15 mussels filtered and 17.0% of filtration rate) and antioxidant system activation (CAT activity et gpx gene expression increase) suggest an exhaustion. Some biomarkers suggested a hypoxic stress. Despite the unfavourable conditions, bivalves have bioaccumulated pathogenic protozoa (Toxoplasma gondii and Giardia duodenalis) during the exposure. Zebra mussel seems to be a promising tool for bioremediation in wastewater.


Subject(s)
Bivalvia , Dreissena , Toxoplasma , Animals , Biodegradation, Environmental , Wastewater
3.
Water Res ; 170: 115297, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31756612

ABSTRACT

Cryptosporidium parvum, Toxoplasma gondii and Giardia duodenalis are worldwide pathogenic protozoa recognized as major causal agents of waterborne disease outbreaks. To overcome the normative process (ISO 15553/2006) limitations of protozoa detection in aquatic systems, we propose to use the zebra mussel (Dreissena polymorpha), a freshwater bivalve mollusc, as a tool for biomonitoring protozoan contamination. Mussels were exposed to three concentrations of C. parvum oocysts, G. duodenalis cysts or T. gondii oocysts for 21 days followed by 21 days of depuration in clear water. D. polymorpha accumulated protozoa in its tissues and haemolymph. Concerning T. gondii and G. duodenalis, the percentage of protozoa positive mussels reflected the contamination level in water bodies. As for C. parvum detection, oocysts did accumulate in mussel tissues and haemolymph, but in small quantities, and the limit of detection was high (between 50 and 100 oocysts). Low levels of T. gondii (1-5 oocysts/mussel) and G. duodenalis (less than 1 cyst/mussel) were quantified in D. polymorpha tissues. The ability of zebra mussels to reflect contamination by the three protozoa for weeks after the contamination event makes them a good integrative matrix for the biomonitoring of aquatic ecosystems.


Subject(s)
Bivalvia , Cryptosporidiosis , Cryptosporidium , Dreissena , Animals , Biological Monitoring , Ecosystem , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL
...