Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 663: 718-730, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30731417

ABSTRACT

The impact of seasonal fluctuations linked to monsoon and irrigation generates redox oscillations in the subsurface, influencing the release of arsenic (As) in aquifers. Here, the biogeochemical control on As mobility was investigated in batch experiments using redox cycling bioreactors and As- and SO42--amended sediment. Redox potential (Eh) oscillations between anoxic (-300-0 mV) and oxic condition (0-500 mV) were implemented by automatically modulating an admixture of N2/CO2 or compressed air. A carbon source (cellobiose, a monomer of cellulose) was added at the beginning of each reducing cycle to stimulate the metabolism of the native microbial community. Results show that successive redox cycles can decrease arsenic mobility by up to 92% during reducing conditions. Anoxic conditions drive mainly the conversion of soluble As(V) to As(III) in contrast to oxic conditions. Phylogenetic analyses of 16S rRNA amplified from the sediments revealed the presence of sulfate and iron - reducing bacteria, confirming that sulfate and iron reduction are key factors for As immobilization from the aqueous phase. As and S K-edge X-ray absorption spectroscopy suggested the association of Fe-(oxyhydr)oxides and the importance of pyrite (FeS2(s)), rather than poorly ordered mackinawite (FeS(s)), for As sequestration under oxidizing and reducing conditions, respectively. Finally, these findings suggest a role for elemental sulfur in mediating aqueous thioarsenates formation in As-contaminated groundwater of the Mekong delta.


Subject(s)
Arsenic/analysis , Bacteria/metabolism , Environmental Monitoring , Groundwater/chemistry , Sulfates/metabolism , Water Pollutants, Chemical/analysis , Bioreactors , Oxidation-Reduction , Vietnam , X-Ray Absorption Spectroscopy
2.
Toxicol Lett ; 255: 63-70, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27178267

ABSTRACT

Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure.


Subject(s)
Chromium/blood , Environmental Monitoring/methods , Erythrocytes/metabolism , Biomarkers/blood , Cell Survival/drug effects , Chromium/toxicity , Erythrocytes/drug effects , Humans , Predictive Value of Tests , Reproducibility of Results , Spectrophotometry, Atomic , Temperature , Time Factors
3.
Water Res ; 101: 1-9, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27240296

ABSTRACT

We report on the synthesis and As adsorption properties of a novel chitosan - iron (oxyhydr)oxide composite material for the remediation of arsenic-contaminated water supplies. FE-SEM, Mössbauer spectroscopy, ICP-OES and synchrotron (Bulk XAS, µXRF) techniques were applied to determine the composition of the new material and investigate the As uptake efficiency and mechanism. The iron (oxyhydr)oxide phase has been identified as a nano-sized goethite, well dispersed in the chitosan matrix, leading to the name 'chitosan goethite bionanocomposite' (CGB). The CGB material is prepared in the form of beads of high density and excellent compression strength; the embedding of the goethite nanoparticles in the chitosan matrix allows for the high adsorption capacity of nanoparticles to be realized. CGB beads remove both As(III) and As(V) efficiently from water, over the pH range 5-9, negating the need for pre-oxidation of As(III). Kinetic studies and µXRF analysis of CGB bead sections show that diffusion-adsorption of As(V) into CGB beads is faster than for As(III). Using CGB beads, synthetic high-arsenic water (0.5 mg-As/L) could be purified to world drinking standard level (<0.01 mg-As/L) using only 1.4 g/L CGB. When considered in combination with the advantages of the low-cost of raw materials required, and facile (green) synthesis route, CGB is a promising material for arsenic remediation, particularly in developing countries, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.


Subject(s)
Arsenic/chemistry , Chitosan/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/chemistry , Water Purification
4.
Environ Sci Technol ; 46(9): 4869-76, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22424403

ABSTRACT

A nanopyrite/greigite composite was synthesized by reacting FeCl(3) and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30-50 nm sized particles containing 28% of greigite (Fe(2+)Fe(3+)(2)S(4)) and 72% pyrite (FeS(2)). Batch reactor experiments were performed with selenite or selenate by equilibrating suspensions containing the nanosized pyrite-greigite solid phase at different pH-values and with or without the addition of extra Fe(2+). XANES-EXAFS spectroscopic techniques revealed, for the first time, the formation of ferroselite (FeSe(2)) as the predominant reaction product, along with elemental Se. In the present experimental conditions, at pH 6 and in equilibrium with Se(0), the solution is oversaturated with respect to ferrosilite. Furthermore, thermodynamic computations show that reaction kinetics likely played a significant role in our experimental system.


Subject(s)
Iron/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Hydrogen-Ion Concentration , Nanocomposites/chemistry , Thermodynamics , X-Ray Absorption Spectroscopy
5.
Environ Sci Technol ; 40(15): 4696-702, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16913126

ABSTRACT

Bacterial activity is commonly thought to be directly responsible for denitrification in soils and groundwater. However, nitrate reduction in low organic sediments occurs abiotically by FeII ions within the fougerite mineral (IMA 2003-057), giving the bluish-green color of gleysols. Fougerite, the mineral counterpart of FeII-III oxyhydroxycarbonate, FeII6(1-x)FeIII6xO12H2(7-3x)CO3, provides a unique in situ redox flexibility, which can adapt x = {[FeIII]/[Fetotal]} between 1/3 and 2/3 as shown using Mössbauer spectroscopy. Chemical potential and Eh-pH diagrams for this system were determined from electrode potential monitored during deprotonation of hydroxycarbonate FeII4FeIII2(OH)12CO3 to assess the possibility of reducing pollutants in the field. Bioreduction of ferric oxyhydroxides in anoxic groundwater yields dissolved FeII, whereas HCO3- anions produced from organic matter are incorporated into fougerite layered double oxyhydroxide structure. Thus, fougerite is the solid-state redox mediator acting as electron shuttle that helps bacterial activity for reducing nitrate by coupling dissimilatory FeIII reduction and oxidation of FeII with reduction of NO3-. It is proposed that this system could be used in the remediation of soils and nitrified waters.


Subject(s)
Bicarbonates/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron Compounds/chemistry , Oxidation-Reduction , Oxides/chemistry , Biotransformation , Iron , Minerals , Models, Chemical , Nitrates/chemistry , Water Pollutants, Chemical/chemistry
6.
Environ Sci Technol ; 36(1): 16-20, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11811482

ABSTRACT

Bioreduction of the well-crystallized ferric oxyhydroxide gamma-FeOOH lepidocrocite was investigated in batch cultures using Shewanella putrefaciens bacterium (strain CIP 8040) at initial pH 7.5 in bicarbonate buffer. The cultures were performed with formate as electron donor without phosphate, in the presence or absence of anthraquinone-2,6-disulfonate (AQDS) as electron shuttle. During lepidocrocite reduction, the iron(II,III) hydroxycarbonate green rust GR(CO32-) was characterized by X-ray diffraction, transmission electron microscopy, and transmission Mössbauer spectroscopy. The AQDS accelerated the kinetics of GR formation. GR was the major end product when bacterial reduction was not stopped by lack of electron donor, and between 55 and 86% of the iron from gamma-FeOOH precipitated in GR(CO32-). However, when the bacterial reduction was stopped by freezing/thawing or the electron donor was exhausted, the large quantity of remaining lepidocrocite induced a transformation of GR into magnetite. This confirms that GR is metastable with respect to magnetite in the presence of gamma-FeOOH.


Subject(s)
Ferritins/chemistry , Ferritins/metabolism , Shewanella putrefaciens/physiology , Water Pollutants, Chemical/metabolism , Biological Availability , Ferric Compounds , Oxidation-Reduction , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...