Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 210: 108612, 2024 May.
Article in English | MEDLINE | ID: mdl-38598867

ABSTRACT

Biosynthesis of Amaryllidaceae alkaloids (AA) starts with the condensation of tyramine with 3,4-dihydroxybenzaldehyde. The latter derives from the phenylpropanoid pathway that involves modifications of trans-cinnamic acid, p-coumaric acid, caffeic acid, and possibly 4-hydroxybenzaldehyde, all potentially catalyzed by hydroxylase enzymes. Leveraging bioinformatics, molecular biology techniques, and cell biology tools, this research identifies and characterizes key enzymes from the phenylpropanoid pathway in Leucojum aestivum. Notably, we focused our work on trans-cinnamate 4-hydroxylase (LaeC4H) and p-coumaroyl shikimate/quinate 3'-hydroxylase (LaeC3'H), two key cytochrome P450 enzymes, and on the ascorbate peroxidase/4-coumarate 3-hydroxylase (LaeAPX/C3H). Although LaeAPX/C3H consumed p-coumaric acid, it did not result in the production of caffeic acid. Yeasts expressing LaeC4H converted trans-cinnamate to p-coumaric acid, whereas LaeC3'H catalyzed specifically the 3-hydroxylation of p-coumaroyl shikimate, rather than of free p-coumaric acid or 4-hydroxybenzaldehyde. In vivo assays conducted in planta in this study provided further evidence for the contribution of these enzymes to the phenylpropanoid pathway. Both enzymes demonstrated typical endoplasmic reticulum membrane localization in Nicotiana benthamiana adding spatial context to their functions. Tissue-specific gene expression analysis revealed roots as hotspots for phenylpropanoid-related transcripts and bulbs as hubs for AA biosynthetic genes, aligning with the highest AAs concentration. This investigation adds valuable insights into the phenylpropanoid pathway within Amaryllidaceae, laying the foundation for the development of sustainable production platforms for AAs and other bioactive compounds with diverse applications.


Subject(s)
Amaryllidaceae Alkaloids , Plant Proteins , Trans-Cinnamate 4-Monooxygenase , Plant Proteins/metabolism , Plant Proteins/genetics , Trans-Cinnamate 4-Monooxygenase/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics , Amaryllidaceae Alkaloids/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Coumaric Acids/metabolism , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068947

ABSTRACT

The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.


Subject(s)
Cannabinoids , Cannabis , Diatoms , Hallucinogens , Cannabis/genetics , Cannabinoids/genetics , Diatoms/genetics , Cannabinoid Receptor Agonists , Bioengineering
3.
Phytochemistry ; 216: 113883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820888

ABSTRACT

Crinum x powellii 'Album' belongs to the Amaryllidaceae medicinal plant family that produces a range of structurally diverse alkaloids with potential therapeutic properties. The optimal conditions for in vitro tissue growth, morphogenesis, and alkaloid biosynthesis remain unclear. Auxin and light play critical roles in regulating plant growth, development, and alkaloid biosynthesis in several Amaryllidaceae plants. Here, we have succeeded in showing, for the first time, that the combination of auxin and light significantly influence C. x powellii "Album" in vitro tissue growth, survival, and morphogenesis compared to individual treatments. Furthermore, this combination also upregulates the expression of alkaloid biosynthetic genes and led to an increase in the content of certain alkaloids, suggesting a positive impact on the defense and therapeutic potential of the calli. Our findings provide insights into the regulation of genes involved in alkaloid biosynthesis in C. x powellii "Album" callus and underline the potential of auxin and light as tools for enhancing their production in plants. This study provides a foundation for further exploration of C. x powellii "Album" calli as a sustainable source of bioactive alkaloids for pharmaceutical and agricultural applications. Furthermore, this study paves the way to the discovery of the biosynthetic pathway of specialized metabolites from C. x powellii "Album", such as cherylline and lycorine.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Crinum , Crinum/metabolism , Indoleacetic Acids , Amaryllidaceae Alkaloids/pharmacology , Alkaloids/metabolism , Plant Extracts , Morphogenesis
4.
Front Plant Sci ; 14: 1231809, 2023.
Article in English | MEDLINE | ID: mdl-37711303

ABSTRACT

Amaryllidaceae alkaloids (AAs) are a large group of plant specialized metabolites with diverse pharmacological properties. Norbelladine is the entry compound in AAs biosynthesis and is produced from the condensation of tyramine and 3,4-dihydroxybenzaldehyde (3,4-DHBA). There are two reported enzymes capable of catalyzing this reaction in-vitro, both with low yield. The first one, norbelladine synthase (NBS), was shown to condense tyramine and 3,4-DHBA, while noroxomaritidine/norcraugsodine reductase (NR), catalyzes a reduction reaction to produce norbelladine. To clarify the mechanisms involved in this controversial step, both NBS and NR homologs were identified from the transcriptome of Narcissus papyraceus and Leucojum aestivum, cloned and expressed in Escherichia coli. Enzymatic assays performed with tyramine and 3,4-DHBA with each enzyme separately or combined, suggested that NBS and NR function together for the condensation of tyramine and 3,4-DHBA into norcraugsodine and further reduction into norbelladine. Using molecular homology modeling and docking studies, we predicted models for the binding of tyramine and 3,4-DHBA to NBS, and of the intermediate norcraugsodine to NR. Moreover, we show that NBS and NR physically interact in yeast and in-planta, that both localize to the cytoplasm and nucleus and are expressed at high levels in bulbs, confirming their colocalization and co-expression thus their ability to work together in the same catalytic route. Finally, their co-expression in yeast led to the production of norbelladine. In all, our study establishes that both NBS and NR participate in the biosynthesis of norbelladine by catalyzing the first key steps associated in the biosynthesis of the Alzheimer's drug galanthamine.

5.
Planta ; 255(2): 30, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34981205

ABSTRACT

MAIN CONCLUSION: Transcriptome analysis of Leucojum aestivum led to the identification of 50 key genes associated with Amaryllidaceae alkaloid biosynthesis including norbelladine synthase which localized in the cytosol and catalyzed norbelladine formation. The Amaryllidaceae alkaloids (AAs) are a large group of plant specialized metabolites, which are known for their biological activities. Although the general chemical reactions in the AA biosynthetic pathway have been proposed, the genes and enzymes of the pathway remain largely unstudied. All AAs are synthesized from a common precursor, norbelladine, by the condensation of tyramine and 3,4-dihydroxybenzaldehyde. The enzyme norbelladine synthase (NBS) which catalyzes the condensation reaction has only been characterized at a molecular level from one species, and the subcellular localizations have not been explored. Hence, the intracellular compartments wherein the AAs are biosynthesized remain unknown. In this study, a first comprehensive transcriptomic analysis of summer snowflake (Leucojum aestivum) was done to identify key genes associated with AA biosynthesis. Fifty orthologous genes were identified and deposited into GenBank. In addition, we identified and further characterized NBS from the transcriptome of L. aestivum and previously reported Narcissus papyraceus. Phylogenetic analysis showed that LaNBS, NpNBS1 and NpNBS2 shared high amino acid identity. The heterologous expression of LaNBS produced a recombinant protein with NBS activity. Bioinformatic prediction and C-terminal GFP tagging in transiently transformed Nicotiana benthamiana showed that LaNBS, NpNBS1 and NpNBS2 were likely localized to the cytosol which suggests that the AA biosynthesis starts in the cytosol. This study provides an Amaryllidaceae transcriptome that will be very helpful to identify genes for characterization studies in AA metabolism in planta or using heterologous systems. In addition, our study will facilitate the bioengineering of AA biosynthetic pathway in plants or in microorganisms.


Subject(s)
Amaryllidaceae , Gene Expression Profiling , Phylogeny , Transcriptome , Tyramine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...