Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Nutr ; 63(1): 7-15, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2107869

ABSTRACT

The metabolism of maltitol (4-alpha-D-glucosylsorbitol) was assessed in fasting conventional (C) rats, C mice and germ-free (GF) mice, using [U-14C]maltitol. The radiorespirometric patterns of 14CO2 collected for 48 h after the administration of labelled maltitol were characterized by a constant rate of 14CO2 production lasting 4 h for both C rats and mice. The pattern for the GF mice showed a peak at the second hour followed immediately by a slow decrease. The percentage recovery of 14CO2 was significantly lower for the GF mice (59%) compared with C animals (72-74%). Urine, faeces and intestinal contents after 48 h totalled 19% of the administered radioactivity in the C rats and mice and 39% in the GF mice. The digestibility of maltitol and the absorption of sorbitol in GF mice was also assessed. The caecum and small intestine of GF mice, 3 h after administration of equimolar quantities of maltitol (140 mg/kg body-weight) or sorbitol (70 mg/kg body-weight), contained 39 and 51% of the ingested dose respectively, present mostly in the caecum as sorbitol. The alpha-glucosidase (maltase) (EC3.2.1.20) activity of the small intestine was appreciably higher (1.5-1.7 times) in the GF mice than in the C mice. These results suggest that the enzymic activities in the small intestine of mice and rats are sufficient to hydrolyse maltitol extensively. Consequently, the slow absorption of sorbitol seems to be an important factor limiting the overall assimilation of maltitol in the small intestine.


Subject(s)
Digestion/physiology , Maltose/analogs & derivatives , Sorbitol/metabolism , Sugar Alcohols/metabolism , Sweetening Agents/metabolism , Animals , Carbon Dioxide/metabolism , Carbon Radioisotopes , Cecum/metabolism , Female , Germ-Free Life/physiology , Intestinal Absorption/physiology , Intestine, Small/metabolism , Male , Maltose/metabolism , Mice , Rats , Rats, Inbred Strains
2.
J Dairy Res ; 55(1): 1-13, 1988 Feb.
Article in English | MEDLINE | ID: mdl-3385060

ABSTRACT

Adding ammonium ferric hexacyanoferrate (AFCF) to cows' fodder produced after the Chernobyl nuclear accident prevented milk contamination by increasing the faecal elimination of 137Cs. Synthesis of ammonium ferric hexa[14C]-cyanoferrate (AF14CF) and its purification were performed for the study of the metabolic fate of this complex, and the evaluation of the possible release of cyanide. The stability of this colloidal product, tested by anaerobic incubation in rumen juice in vitro, showed no release of free cyanide from AF14CF, but hexacyanoferrate was identified in the rumen juice and 0.13% of the added radioactivity was converted to labelled CO2. AF14CF administered per os to two cows showed a nearly quantitative excretion of radioactivity in faeces during the first 3 d (91-95%). A very low but significant level of radioactivity appeared in plasma, blood cells, expired CO2 and was detected in organs taken 9 d after administration. Total cumulative radioactivity in urine and milk amounted to 0.19-0.47% and 0.068-0.071% respectively for the two cows. Labelled hexacyanoferrate and thiocyanate were identified in the urine and also in faeces. In spite of this relative instability of AFCF in the rumen of cows, the poor absorption of AF14CF degradation products showed that AFCF constitutes an efficient and safe food additive to prevent the absorption of radioactive caesium from ruminant feed and its secretion in milk.


Subject(s)
Cattle/metabolism , Cesium Radioisotopes/metabolism , Ferrocyanides/chemical synthesis , Accidents , Animal Feed/radiation effects , Animals , Female , Ferrocyanides/metabolism , Food Contamination, Radioactive , Milk/analysis , Nuclear Reactors , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL