Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 26(9-10): 743-747, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-10862880

ABSTRACT

The effect of hexoses (glucose and galactose) addition to the feed xylose mineral medium of Debaryomyces hansenii chemostat cultures grown at a constant dilution rate of 0.055 h(-1) was studied. Xylitol was the major product detected amongst all tested conditions. The maximal values for xylitol yield and volumetric productivity (0.56 gg(-1) xylose and 0.21 gl(-1)h(-1), respectively) were obtained for a glucose/xylose feeding ratio of 10%, showing that the addition of small amounts of glucose, but not galactose, enhanced the xylitol production. A xylitol yield increase of 30%, compared with the sole xylose-containing feed medium, was observed. It was found that the oxygen requirement for D. hansenii growth is lower under glucose compared with xylose. Ethanol and glycerol were only produced for glucose/xylose feeding ratio above 30%. The byproducts accumulation was correlated with glucose metabolism, because a direct relationship between the increase of ethanol (and glycerol) concentration and the increase of glucose in the feed medium was found.

2.
Curr Microbiol ; 36(6): 337-40, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9645920

ABSTRACT

Shake flask cultivation of the facultative methylotroph Methylobacterium sp. RXM was carried out by using a statistical experimental design to investigate the role of metal association on the formate dehydrogenase (FDH) levels. The maximal values of FDH activity were obtained for tungsten concentration up to 0.6 µM and for molybdenum concentration between 0.6 and 0.9 µM. The negative polynomial parameter (beta2) for tungsten compared with the positive polynomial parameter (beta1) for molybdenum on the FDH activity suggested that the latter metal exerts a stronger influence on the enzyme stimulation than the tungsten metal. A negative interaction between both metals was found, suggesting that tungsten and molybdenum shared an antagonistic effect on the enzyme activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...