Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 325(2): F188-F198, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37345845

ABSTRACT

Renin cells are precursors for other cell types in the kidney and show high plasticity in postnatal life in response to challenges to homeostasis. Our previous single-cell RNA-sequencing studies revealed that the dual zinc-finger transcription factor Gata3, which is important for cell lineage commitment and differentiation, is expressed in mouse renin cells under normal conditions and homeostatic threats. We identified a potential Gata3-binding site upstream of the renin gene leading us to hypothesize that Gata3 is essential for renin cell identity. We studied adult mice with conditional deletion of Gata3 in renin cells: Gata3fl/fl;Ren1dCre/+ (Gata3-cKO) and control Gata3fl/fl;Ren1d+/+ counterparts. Gata3 immunostaining revealed that Gata3-cKO mice had significantly reduced Gata3 expression in juxtaglomerular, mesangial, and smooth muscle cells, indicating a high degree of deletion of Gata3 in renin lineage cells. Gata3-cKO mice exhibited a significant increase in blood urea nitrogen, suggesting hypovolemia and/or compromised renal function. By immunostaining, renin-expressing cells appeared very thin compared with their normal plump shape in control mice. Renin cells were ectopically localized to Bowman's capsule in some glomeruli, and there was aberrant expression of actin-α2 signals in the mesangium, interstitium, and Bowman's capsule in Gata3-cKO mice. Distal tubules showed dilated morphology with visible intraluminal casts. Under physiological threat, Gata3-cKO mice exhibited a lower increase in mRNA levels than controls. Hematoxylin-eosin, periodic acid-Schiff, and Masson's trichrome staining showed increased glomerular fusion, absent cubical epithelial cells in Bowman's capsule, intraglomerular aneurysms, and tubular dilation. In conclusion, our results indicate that Gata3 is crucial to the identity of cells of the renin lineage.NEW & NOTEWORTHY Gata3, a dual zinc-finger transcription factor, is responsible for the identity and localization of renin cells in the kidney. Mice with a conditional deletion of Gata3 in renin lineage cells have abnormal kidneys with juxtaglomerular cells that lose their characteristic location and are misplaced outside and around arterioles and glomeruli. The fundamental role of Gata3 in renin cell development offers a new model to understand how transcription factors control cell location, function, and pathology.


Subject(s)
Kidney Diseases , Renin , Mice , Animals , Renin/genetics , Renin/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Kidney/metabolism , Kidney Glomerulus/metabolism , Kidney Diseases/pathology , Zinc/metabolism
2.
Hypertension ; 79(3): e56-e66, 2022 03.
Article in English | MEDLINE | ID: mdl-35000430

ABSTRACT

BACKGROUND: The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. METHODS: We generated zebrafish with CRISPR-Cas9-targeted knockout of renin (ren-/-) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren-/- with ren+/+ zebrafish and with the metanephric kidneys of Ren1c-/- and Ren1c+/+ mice. RESULTS: The ren-/- larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren-/- mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1c-/- mouse kidney. Fluorescent reporters for renin and smooth muscle actin (Tg(ren:LifeAct-RFP; acta2:EGFP)), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren-/- fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1YFP Ren1c-/- mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. CONCLUSIONS: Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival.


Subject(s)
Blood Pressure/genetics , Kidney/metabolism , Renin-Angiotensin System/physiology , Renin/metabolism , Transcriptome , Animals , Animals, Genetically Modified , Clustered Regularly Interspaced Short Palindromic Repeats , Mice , Mice, Knockout , Renin/genetics , Zebrafish
3.
Trends Mol Med ; 27(3): 280-292, 2021 03.
Article in English | MEDLINE | ID: mdl-33162328

ABSTRACT

Hypotension and changes in fluid-electrolyte balance pose immediate threats to survival. Juxtaglomerular cells respond to such threats by increasing the synthesis and secretion of renin. In addition, smooth muscle cells (SMCs) along the renal arterioles transform into renin cells until homeostasis has been regained. However, chronic unrelenting stimulation of renin cells leads to severe kidney damage. Here, we discuss the origin, distribution, function, and plasticity of renin cells within the kidney and immune compartments and the consequences of distorting the renin program. Understanding how chronic stimulation of these cells in the context of hypertension may lead to vascular pathology will serve as a foundation for targeted molecular therapies.


Subject(s)
Renin-Angiotensin System/physiology , Renin/metabolism , Animals , Blood Vessels/metabolism , Hepatocytes/metabolism , Humans , Hypotension/therapy , Kidney/physiology , Myocytes, Smooth Muscle/metabolism , Nephrons/metabolism , Water-Electrolyte Balance/physiology
4.
Hypertension ; 75(5): 1242-1250, 2020 05.
Article in English | MEDLINE | ID: mdl-32200675

ABSTRACT

Megalin is an endocytic receptor contributing to protein reabsorption. Impaired expression or trafficking of megalin increases urinary renin and allowed the detection of prorenin, which normally is absent in urine. Here, we investigated (pro)renin uptake by megalin, using both conditionally immortalized proximal tubule epithelial cells and Brown Norway Rat yolk sac cells (BN16). To distinguish binding and internalization, cells were incubated with recombinant human (pro)renin at 4°C and 37°C, respectively. (Pro)renin levels were assessed by immunoradiometric assay. At 4°C, BN16 cells bound 3× more prorenin than renin, suggestive for a higher affinity of prorenin. Similarly, at 37°C, prorenin accumulated at 3- to 4-fold higher levels than renin in BN16 cells. Consequently, depletion of medium prorenin (but not renin) content occurred after 24 hours. No such differences were observed in conditionally immortalized proximal tubule epithelial cells, and M6P (mannose-6-phosphate) greatly reduced conditionally immortalized proximal tubule epithelial cells (pro)renin uptake, suggesting that these cells accumulate (pro)renin largely via M6P receptors. M6P did not affect (pro)renin uptake in BN16 cells. Yet, inhibiting megalin expression with siRNA greatly reduced (pro)renin binding and internalization by BN16 cells. Furthermore, treating BN16 cells with albumin, an endogenous ligand of megalin, also decreased binding and internalization of (pro)renin, while deleting the (pro)renin receptor affected the latter only. Exposing prorenin's prosegment with the renin inhibitor aliskiren dramatically increased prorenin binding, while after prosegment cleavage with trypsin prorenin binding was identical to that of renin. In conclusion, megalin might function as an endocytic receptor for (pro)renin and displays a preference for prorenin. Megalin-mediated endocytosis requires the (pro)renin receptor.


Subject(s)
Endocytosis/physiology , Enzyme Precursors/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Renin/metabolism , Amides/pharmacology , Animals , Cell Line, Transformed , Epithelial Cells/metabolism , Fumarates/pharmacology , Humans , Kidney Tubules, Proximal/cytology , Low Density Lipoprotein Receptor-Related Protein-2/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Peptide Fragments/metabolism , Protein Binding , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Rats , Rats, Inbred BN , Rats, Sprague-Dawley , Receptor, IGF Type 2/antagonists & inhibitors , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/metabolism , Renin/chemistry , Renin/drug effects , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology , Substrate Specificity , Temperature , Trypsin/metabolism , Yolk Sac/cytology , Prorenin Receptor
5.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R640-R650, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30943054

ABSTRACT

Formation of the metanephric kidney requires coordinated interaction among the stroma, ureteric bud, and cap mesenchyme. The transcription factor Foxd1, a specific marker of renal stromal cells, is critical for normal kidney development. The prorenin receptor (PRR), a receptor for renin and prorenin, is also an accessory subunit of the vacuolar proton pump V-ATPase. Global loss of PRR is embryonically lethal in mice, indicating an essential role of the PRR in embryonic development. Here, we report that conditional deletion of the PRR in Foxd1+ stromal progenitors in mice (cKO) results in neonatal mortality. The kidneys of surviving mice show reduced expression of stromal markers Foxd1 and Meis1 and a marked decrease in arterial and arteriolar development with the subsequent decreased number of glomeruli, expansion of Six2+ nephron progenitors, and delay in nephron differentiation. Intrarenal arteries and arterioles in cKO mice were fewer and thinner and showed a marked decrease in the expression of renin, suggesting a central role for the PRR in the development of renin-expressing cells, which in turn are essential for the proper formation of the renal arterial tree. We conclude that stromal PRR is crucial for the appropriate differentiation of the renal arterial tree, which in turn may restrict excessive expansion of nephron progenitors to promote a coordinated and proper morphogenesis of the nephrovascular structures of the mammalian kidney.


Subject(s)
Kidney/growth & development , Nephrons/metabolism , Organogenesis/physiology , Receptors, Cell Surface/metabolism , Animals , Cell Differentiation/physiology , Gene Expression Regulation/physiology , Kidney/metabolism , Mice, Transgenic , Renin/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Prorenin Receptor
6.
Hypertension ; 69(6): 1136-1144, 2017 06.
Article in English | MEDLINE | ID: mdl-28396529

ABSTRACT

Because of the presence of the blood-brain barrier, brain renin-angiotensin system activity should depend on local (pro)renin synthesis. Indeed, an intracellular form of renin has been described in the brain, but whether it displays angiotensin (Ang) I-generating activity (AGA) is unknown. Here, we quantified brain (pro)renin, before and after buffer perfusion of the brain, in wild-type mice, renin knockout mice, deoxycorticosterone acetate salt-treated mice, and Ang II-infused mice. Brain regions were homogenized and incubated with excess angiotensinogen to detect AGA, before and after prorenin activation, using a renin inhibitor to correct for nonrenin-mediated AGA. Renin-dependent AGA was readily detectable in brain regions, the highest AGA being present in brain stem (>thalamus=cerebellum=striatum=midbrain>hippocampus=cortex). Brain AGA increased marginally after prorenin activation, suggesting that brain prorenin is low. Buffer perfusion reduced AGA in all brain areas by >60%. Plasma renin (per mL) was 40× to 800× higher than brain renin (per gram). Renin was undetectable in plasma and brain of renin knockout mice. Deoxycorticosterone acetate salt and Ang II suppressed plasma renin and brain renin in parallel, without upregulating brain prorenin. Finally, Ang I was undetectable in brains of spontaneously hypertensive rats, while their brain/plasma Ang II concentration ratio decreased by 80% after Ang II type 1 receptor blockade. In conclusion, brain renin levels (per gram) correspond with the amount of renin present in 1 to 20 µL of plasma. Brain renin disappears after buffer perfusion and varies in association with plasma renin. This indicates that brain renin represents trapped plasma renin. Brain Ang II represents Ang II taken up from blood rather than locally synthesized Ang II.


Subject(s)
Amides/pharmacology , Angiotensin II/pharmacology , Blood-Brain Barrier/drug effects , Brain/metabolism , Fumarates/pharmacology , Hypertension/drug therapy , Renin-Angiotensin System/drug effects , Angiotensinogen/metabolism , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Mice , Mice, Knockout , Random Allocation , Rats , Rats, Inbred SHR , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...