Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336289

ABSTRACT

The Internet Engineering Task Force (IETF) has standardized a new framework, called Static Context Header Compression and fragmentation (SCHC), which offers adaptation layer functionality designed to support IPv6 over Low Power Wide Area Networks (LPWANs). The IETF is currently profiling SCHC, and in particular its packet fragmentation and reassembly functionality, for its optimal use over certain LPWAN technologies. Considering the energy constraints of LPWAN devices, it is crucial to determine the energy performance of SCHC packet transfer. In this paper, we present a current and energy consumption model of SCHC packet transfer over Sigfox, a flagship LPWAN technology. The model, which is based on real hardware measurements, allows to determine the impact of several parameters and fragment transmission strategies on the energy performance of SCHC packet transfer over Sigfox. Among other results, we have found that the lifetime of a device powered by a 2000 mAh battery, transmitting packets every 5 days, is 168 days for 2250-byte packets, while it increases to 1464 days for 77-byte packets.

2.
Sensors (Basel) ; 21(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770541

ABSTRACT

Most Internet of Things (IoT) communication technologies rely on terrestrial network infrastructure. When such infrastructure is not available or does not provide sufficient coverage, satellite communication offers an alternative IoT connectivity solution. Satellite-enabled IoT devices are typically powered by a limited energy source. However, as of this writing, and to our best knowledge, the energy performance of satellite IoT technology has not been investigated. In this paper, we model and evaluate the energy performance of Iridium satellite technology for IoT devices. Our work is based on real hardware measurements. We provide average current consumption, device lifetime, and energy cost of data delivery results as a function of different parameters. Results show, among others, that an Iridium-enabled IoT device, running on a 2400 mAh battery and sending a 100-byte message every 100 min, may achieve a lifetime of 0.95 years. However, Iridium device energy performance decreases significantly with message rate.

4.
Sensors (Basel) ; 21(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640804

ABSTRACT

LoRaWAN has become a popular technology for the Internet of Things (IoT) device connectivity. One of the expected properties of LoRaWAN is high network scalability. However, LoRaWAN network performance may be compromised when even a relatively small number of devices use link-layer reliability. After failed frame delivery, such devices typically tend to reduce their physical layer bit rate by increasing their spreading factor (SF). This reaction increases channel utilization, which may further degrade network performance, even into congestion collapse. When this problem arises, all the devices performing reliable frame transmission end up using SF12 (i.e., the highest SF in LoRaWAN). In this paper, we identify and characterize the described network condition, which we call the SF12 Well, in a range of scenarios and by means of extensive simulations. The results show that by using alternative SF-management techniques it is possible to avoid the problem, while achieving a packet delivery ratio increase of up to a factor of 4.7.

7.
Sensors (Basel) ; 20(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824494

ABSTRACT

Bluetooth Low Energy (BLE) has become a major wireless technology for the Internet of Things (IoT). Recent efforts of academia, industry and standards development organizations have focused on creating BLE mesh network solutions. 6BLEMesh is a specification being developed by the IETF that defines an IPv6-oriented approach for BLE mesh networking. In this paper, we perform an experimental evaluation of 6BLEMesh, based on a real implementation. We evaluate latency, round trip time (RTT) and energy consumption. For the latter, we model the device current consumption, we determine the energy efficiency of communication, and we obtain the theoretical device lifetime (for battery-operated devices), for three different hardware platforms. Under the assumptions in our study (including a simple 235 mAh battery, and periodic data transmission), the maximum, asymptotic, device lifetime is 573 days, whereas battery-operated router devices can also achieve 3-digit lifetimes (in days) in many scenarios. Our results also illustrate the impact on performance of BLE-level and application-level parameter settings, adaptation layer mechanisms such as IPv6 header compression, and device hardware characteristics.

8.
Sensors (Basel) ; 19(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30870988

ABSTRACT

The recent publication of the Bluetooth Mesh standard is a remarkable milestone in the evolution of Bluetooth Low Energy (BLE). As a new technology in the Internet of Things (IoT) market, it is crucial to investigate the performance of Bluetooth Mesh. However, while a fundamental feature of Bluetooth Mesh is its suitability for energy-constrained devices, this aspect has not yet been properly considered in the literature. In this paper, we model the current consumption, lifetime and energy cost per delivered bit of a battery-operated Bluetooth Mesh sensor node. The model is based on measurements performed on a real hardware platform. Evaluation results quantify the impact of crucial Bluetooth Mesh parameters. Among others, we have found that a sensor device running on a simple 235 mAh battery, and sending a data message every 10 s, can achieve a lifetime of up to 15.6 months, whereas the asymptotic lifetime is 21.4 months.

9.
Sensors (Basel) ; 19(3)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736457

ABSTRACT

Sigfox has become one of the main Low-Power Wide Area Network (LPWAN) technologies, as it has attracted the attention of the industry, academy and standards development organizations in recent years. Sigfox devices, such as sensors or actuators, are expected to run on limited energy sources; therefore, it is crucial to investigate the energy consumption of Sigfox. However, the literature has only focused on this topic to a very limited extent. This paper presents an analytical model that characterizes device current consumption, device lifetime and energy cost of data delivery with Sigfox. In order to capture a realistic behavior, the model has been derived from measurements carried out on a real Sigfox hardware module. The model allows quantifying the impact of relevant Sigfox parameters and mechanisms, as well as frame losses, on Sigfox device energy performance. Among others, evaluation results show that the considered Sigfox device, powered by a 2400 mAh battery, can achieve a theoretical lifetime of 1.5 or 2.5 years while sending one message every 10 min at 100 bit/s or 600 bit/s, respectively, and an asymptotic lifetime of 14.6 years as the message transmission rate decreases.

10.
Radiographics ; 37(6): 1854-1869, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29019761

ABSTRACT

Contrast-enhanced voiding urosonography (ceVUS) is a dynamic imaging technique that makes it possible to study the structure of the urinary tract after the administration of intravesical contrast material. Initially, ceVUS was indicated mainly to study vesicoureteral reflux (VUR); however, since the ability of ceVUS to depict the structure of the urethra was demonstrated in both sexes, ceVUS is now indicated for examination of the entire urinary tract. The main benefit of ceVUS is that it does not use ionizing radiation. In recent years, fundamental changes have occurred in the understanding of VUR. The lessening effect of VUR and the low rate of occurrence of urethral pathologic conditions have given rise to changes in the indications for tests for these conditions. In addition to being able to help confirm a diagnosis of VUR, the ceVUS technique can be used to depict obstructive and nonobstructive urethral pathologic conditions, as well as normal variants, on high-quality images. Furthermore, ceVUS enables real-time assessment of voiding function. For these reasons, ceVUS should be not only an alternative to voiding cystourethrography, but also the technique of choice for the study of the entire urinary tract in pediatric patients. Online supplemental material is available for this article. ©RSNA, 2017.


Subject(s)
Ultrasonography/methods , Vesico-Ureteral Reflux/diagnostic imaging , Adolescent , Albumins , Child , Child, Preschool , Contrast Media , Fluorocarbons , Humans , Infant , Phospholipids , Sulfur Hexafluoride
11.
Sensors (Basel) ; 17(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035347

ABSTRACT

LoRaWAN is a flagship Low-Power Wide Area Network (LPWAN) technology that has highly attracted much attention from the community in recent years. Many LoRaWAN end-devices, such as sensors or actuators, are expected not to be powered by the electricity grid; therefore, it is crucial to investigate the energy consumption of LoRaWAN. However, published works have only focused on this topic to a limited extent. In this paper, we present analytical models that allow the characterization of LoRaWAN end-device current consumption, lifetime and energy cost of data delivery. The models, which have been derived based on measurements on a currently prevalent LoRaWAN hardware platform, allow us to quantify the impact of relevant physical and Medium Access Control (MAC) layer LoRaWAN parameters and mechanisms, as well as Bit Error Rate (BER) and collisions, on energy performance. Among others, evaluation results show that an appropriately configured LoRaWAN end-device platform powered by a battery of 2400 mAh can achieve a 1-year lifetime while sending one message every 5 min, and an asymptotic theoretical lifetime of 6 years for infrequent communication.

12.
Sensors (Basel) ; 17(7)2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28640183

ABSTRACT

Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues.

13.
Sensors (Basel) ; 17(1)2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28124987

ABSTRACT

Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

14.
Sensors (Basel) ; 15(9): 22874-98, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26378534

ABSTRACT

Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

15.
Sensors (Basel) ; 14(8): 14932-70, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25196004

ABSTRACT

Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.


Subject(s)
Assisted Living Facilities/methods , Automation/instrumentation , Computer Communication Networks/instrumentation , Wireless Technology/instrumentation , Electric Power Supplies , Signal Processing, Computer-Assisted/instrumentation
16.
Sensors (Basel) ; 14(7): 11993-2022, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25004154

ABSTRACT

The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) has been recently developed by the Internet Engineering Task Force (IETF). Given its crucial role in enabling the Internet of Things, a significant amount of research effort has already been devoted to RPL. However, the RPL network convergence process has not yet been investigated in detail. In this paper we study the influence of the main RPL parameters and mechanisms on the network convergence process of this protocol in IEEE 802.15.4 multihop networks. We also propose and evaluate a mechanism that leverages an option available in RPL for accelerating the network convergence process. We carry out extensive simulations for a wide range of conditions, considering different network scenarios in terms of size and density. Results show that network convergence performance depends dramatically on the use and adequate configuration of key RPL parameters and mechanisms. The findings and contributions of this work provide a RPL configuration guideline for network convergence performance tuning, as well as a characterization of the related performance trade-offs.

SELECTION OF CITATIONS
SEARCH DETAIL
...