Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37512799

ABSTRACT

Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.

2.
Int J Med Microbiol ; 301(6): 531-5, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21570908

ABSTRACT

Although Candida parapsilosis is the most prevalent among the 3 species of the *psilosis group, studies applying DNA-based diagnostic techniques with isolates previously identified as C. parapsilosis have revealed that both C. orthopsilosis and C. metapsilosis account for 0-10% of all these isolates, depending on the geographical area. Differences in the degrees of antifungal susceptibility and virulence have been found, so a more precise identification is required. In a first approach, we reidentified 38 randomly chosen clinical isolates, previously identified as C. parapsilosis, using the RPO2 (CA2) RAPD marker. Among them, we reclassified 4 as C. metapsilosis and 5 as C. orthopsilosis. We previously developed a method to identify different pathogen yeast species, including C. parapsilosis, based on the amplification of the RPS0 gene intron. In this work, we extend this approach to the new *psilosis species by partially sequencing their RPS0 gene, including the intron sequence. Based on intron sequences, we designed specific primers capable of identifying C. orthopsilosis and C. metapsilosis species, and we reidentified species among the initial isolates. These new primers have allowed a specific and rapid identification of C. orthopsilosis and C. metapsilosis.


Subject(s)
Candida/classification , Candida/isolation & purification , Introns , Antifungal Agents , Base Sequence , Candida/genetics , Cloning, Molecular , DNA Primers/genetics , DNA, Fungal/genetics , Drug Resistance, Fungal , Genes, Fungal , Microbial Sensitivity Tests , Molecular Sequence Data , Mycological Typing Techniques , Polymerase Chain Reaction/methods , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...