Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 9247, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28835653

ABSTRACT

Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.


Subject(s)
Cell Culture Techniques , Lasers , Nanostructures , Nanotechnology , Polymers , Animals , Cell Adhesion , Cell Proliferation , Cytoskeleton/metabolism , Fluorescent Antibody Technique , Mice , NIH 3T3 Cells , Nanostructures/chemistry , Polymers/chemistry
2.
Adv Mater ; 28(28): 5931-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27145145

ABSTRACT

Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.

3.
Lab Chip ; 13(19): 3827-31, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23912590

ABSTRACT

We propose a microfluidics device whose main functional part consists of a microcapillary produced by the self-rolling of a thin poly(dimethylsiloxane) film. Rolling is caused by inhomogeneous swelling of the film, pre-treated by oxygen plasma, in the vapour of chloroform. The capillaries are integrated with external electrical circuits by co-rolling electrodes and micro-resistors. The local control of temperature in the tubes by Joule heating is illustrated via the rate of an intra-tubular chemiluminescent reaction. The novel tubes with engineered inner structure can find numerous advanced applications such as functional elements of integrated microfluidics circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...