Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 274(1-2): 233-43, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15072799

ABSTRACT

Glass transitions of five varieties of Carbopol (acrylic acid polymers cross-linked with allyl sucrose or allyl pentaerythritol) and two varieties of Noveon (calcium salts of acrylic acid polymer cross-linked with divinylglycol) differing in cross-linking density and nature and content in residual solvents, were analysed (as compressed probes) by differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (MTDSC), and oscillatory rheometry. All carbopol compacts showed a main glass transition, at a temperature between 130 and 140 degrees C, Tg, independently of their cross-linking degree and molecular weight. Additionally two batches of Carbopol 971P, which had greater contents in residual solvents, also presented a secondary transition at 65-70 degrees C. Sorption of water during storage of carbopol compacts at different relative humidity environments caused the Tg to strongly decrease. Compacts stored at 97.5% relative humidity have Tg below 0 degrees C and behave, at room temperature, as flexible hydrogels. The Gordon-Taylor/Kelley-Bueche equation only fit the dependence of Tg on water content well for carbopol compacts containing less than 15% water. The plasticizing effect of water was clearly evidenced in the considerable decrease in the storage and loss moduli of the compacts. Although the energy associated to the glass transitions of carbopol polymers, 0.40-0.50 Jg(-1) degrees C(-1), is high enough to be clearly detected by DSC, in some cases the evaporation of residual solvents may make it difficult to observe the Tg. This inconvenience is overcome using MTDSC or oscillatory rheometry. The decrease in Tg of carbopol caused by water sorption when compacts were stored at 97.5% R.H. explains why their loss (G") and storage (G') moduli at room temperature decreased four orders of magnitude. In contrast, in noveon varieties, calcium ions act as ionic cross-linkers of the carboxylic groups, providing rigid networks with much higher Tg, and storage and loss moduli. This explains that despite sorbing similar amounts of water to carbopol, the changes on the mechanical properties of noveon compacts were much less important (i.e., G' and G" decreased up to one order of magnitude).


Subject(s)
Glass , Polyvinyls/chemistry , Acrylic Resins , Calorimetry, Differential Scanning , Elasticity/drug effects , Viscosity/drug effects
3.
Drug Dev Ind Pharm ; 27(5): 381-91, 2001 May.
Article in English | MEDLINE | ID: mdl-11448045

ABSTRACT

We evaluated the effects of several process variables on the pharmaceutical and drug release properties of extrusion-spheronization pellets of blends of Carbopol 934 and microcrystalline cellulose (MCC) containing a high proportion of Carbopol. The model drug was theophylline. Rheological monitoring during mixing was by mixer torque rheometry. Carbopol:MCC blends wetted with a CaCl2 solution showed different rheological behavior compared to blends with a high proportion of MCC wetted with water only. In contrast to previous suggestions, the optimal wetting point for extrusion did not coincide with the point of peak torque, but occurred just beyond this point, at much lower torque. The influence of process variables on blend properties was investigated with a three-variable factorial design (Carbopol:MCC ratio, wetting liquid proportion, CaCl2:Carbopol ratio), and the influence of process variables on pellet properties with a four-variable design (the variables listed plus extrusion screen hole diameter). Blend torque values were strongly influenced by CaCl2 proportion, while mean pellet diameter was influenced by Carbopol:MCC ratio. Mean pellet diameter also differed depending on whether the pellets contained theophylline. The observed among-formulation differences in theophylline release kinetics were largely explained by differences in pellet size and theophylline hydration state. Compaction of pellets to form tablets markedly modified the drug release profile, making it biphasic.


Subject(s)
Acrylates/chemistry , Cellulose/chemistry , Delayed-Action Preparations/chemistry , Theophylline/chemistry , Algorithms , Drug Design , Particle Size , Structure-Activity Relationship , Tablets/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...