Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microorganisms ; 10(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35744680

ABSTRACT

Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.

2.
Lancet Infect Dis ; 22(1): e13-e27, 2022 01.
Article in English | MEDLINE | ID: mdl-34735799

ABSTRACT

Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.


Subject(s)
Disease Outbreaks/prevention & control , Henipavirus Infections/drug therapy , Henipavirus/pathogenicity , Medical Countermeasures , Public Health , Animals , COVID-19/prevention & control , Chiroptera/virology , Clinical Trials, Phase III as Topic , Henipavirus/classification , Henipavirus Infections/prevention & control , Henipavirus Infections/transmission , Humans , Nipah Virus/pathogenicity , SARS-CoV-2/pathogenicity
3.
mSphere ; 5(4)2020 07 08.
Article in English | MEDLINE | ID: mdl-32641430

ABSTRACT

Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.


Subject(s)
Henipavirus Infections , Nipah Virus/pathogenicity , Animals , Betacoronavirus/pathogenicity , COVID-19 , Congresses as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Henipavirus Infections/diagnosis , Henipavirus Infections/prevention & control , Henipavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Zoonoses/epidemiology
5.
Rev. bioméd. (México) ; 11(1): 61-71, ene.-mar. 2000. ilus, tab, CD-ROM
Article in Spanish | LILACS | ID: lil-292319

ABSTRACT

La región terminal repetida larga (LTR) del genoma del virus de la inmunodeficiencia humana funciona como un sitio de control y regulación de la transcripción viral. Pese a que el LTR no codifica proteínas estructurales o accesorias, su función está íntimamente ligada a la replicación viral en respuesta a mitógenos, citocinas e incluso a estímulos generados por agentes infecciosos oportunistas. En esta revisión, se describe la función del LTR en la replicación viral in vitro y su importancia en la patogenia del Síndrome de Inmunodeficiencia Adquirida.


Subject(s)
HIV/pathogenicity , Acquired Immunodeficiency Syndrome/physiopathology , Terminal Repeat Sequences , Virus Replication/physiology , Retroviridae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...