Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 102(12): 126403, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19392301

ABSTRACT

Many-body perturbation theory in the GW approach is applied to lanthanide oxides, using the local-density approximation plus a Hubbard U correction (LDA+U) as the starting point. Good agreement between the G0W0 density of states and experimental spectra is observed for CeO2 and Ce2O3. Unlike the LDA+U method G0W0 exhibits only a weak dependence on U in a physically meaningful range of U values. For the whole lanthanide sesquioxide (Ln2O3) series G0W0 @ LDA+U reproduces the main features found for the optical experimental band gaps. The relative positions of the occupied and unoccupied f states predicted by G0W0 confirm the experimental conjecture derived from phenomenological arguments.

2.
Phys Rev Lett ; 101(10): 106404, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18851234

ABSTRACT

State-of-the-art theory addresses single-electron excitations in condensed matter by linking density-functional theory (DFT) with many-body perturbation theory. In actual calculations it is common to employ the pseudopotential (PP) approach, where pseudo-wave-functions enter the calculation of the self-energy, and the core-valence interaction is treated at the DFT level. In this Letter we present accurate all-electron calculations of the self-energy and systematically compare the results to those of PP calculations. The analysis for a range of different materials reveals that both above mentioned approximations are indeed problematic.

SELECTION OF CITATIONS
SEARCH DETAIL
...