Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(43): 49111-49121, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32990425

ABSTRACT

FLAG tag (DYKDDDDK) is a short peptide commonly used for the purification of recombinant proteins. The high price of the affinity columns and their limited reusability are a shortcoming for their widespread use in biotechnology applications. Molecularly imprinted polymers (MIPs) can circumvent some of the limitations of bioaffinity columns for such applications, including long-term stability, reusability, and cost. We report herein the synthesis of MIPs selective to the FLAG tag by hierarchical imprinting. Using the epitope imprinting approach, a 5-amino acid peptide DYKDC was selected as a template and was covalently immobilized on the surface of microporous silica beads, previously functionalized with different aminosilanes, namely, 3-(2-aminoethylamino)propyldimethoxymethylsilane, AEAPMS, and N-(2-aminoethyl)-2,2,4-trimethyl-1-aza-2-silacyclopentane, AETAZS. We investigated the effect of the type of silane on the production of homogeneous silane-grafted layers with the highest extent of silanol condensation as possible using 29Si CP/MAS NMR. We observed that the right orientation of the imprinted cavities can substantially improve analyte recoveries from the MIP. After template and silica removal, the DYKDC-MIPs were used as sorbents for solid-phase extraction (molecularly imprinted solid-phase extraction) of the FLAG peptide, showing that the polymer prepared with AETAZS-bound silica beads contained binding sites more selective to the tag (RMIP-AZA = 87.4% vs RNIP-AZA = 4.1%, n = 3, RSD ≤ 4.2%) than those prepared using AEAPMS (RMIP-DM = 73.4% vs RNIP-DM = 23.2%, n = 3, RSD ≤ 4.0%) as a functionalization agent. An extensive computational molecular modeling study was also conducted, shedding some light on the interaction mechanism between the FLAG peptide and the imprinted template in the binding cavities.


Subject(s)
Epitopes/chemistry , Molecular Imprinting , Oligopeptides/analysis , Polymers/chemistry , Molecular Structure , Particle Size , Silicon Dioxide/chemistry , Surface Properties
2.
Anal Chem ; 91(6): 4100-4106, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30786715

ABSTRACT

Epitope tagging is widely used to fuse a known epitope to proteins for which no affinity receptor is available by using recombinant DNA technology. One example is FLAG epitope (DYKDDDDK), which provides better purity and recoveries than the favorite poly histidine tag. However, purification requires using anti-FLAG antibody resins, the high cost and nonreusability of which restrict widespread use. One cost-effective solution is provided by the use of bioinspired anti-FLAG molecularly imprinted polymers (MIPs). This work describes the development of MIPs, based on the epitope approach, synthesized from the tetrapeptide DYKD as template that affords purification of FLAG-derived recombinant proteins. Polymer was optimized by using a combinatorial approach to select the functional monomer(s) and cross-linker(s), resulting in the best specific affinity toward FLAG and the peptide DYKD. The imprinted resin obtained was used to purify mCherry proteins tagged with either FLAG or DYKD epitopes from crude cell lysates. Both mCherry variants were highly efficiently purified ( R ≥ 95%, RSD ≤ 15%, n = 3) and impurities were removed. Unlike existing antibody-based resins, the proposed tag-imprinting strategy provides a general method for meeting the growing demand for efficient, inexpensive, and versatile materials for tagged proteins purification.


Subject(s)
Chromatography, Affinity/methods , Molecular Imprinting/methods , Oligopeptides/chemistry , Polymers/chemistry , Recombinant Fusion Proteins/isolation & purification , Luminescent Proteins/chemistry , Luminescent Proteins/isolation & purification , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Red Fluorescent Protein
3.
Article in English | MEDLINE | ID: mdl-30235069

ABSTRACT

A sensitive and reliable method using pressurised liquid extraction (PLE) followed by molecularly imprinted solid phase extraction (MISPE) and high performance liquid chromatography with fluorescence detection (HPLC-FLD) has been developed for the analysis of alternariol (AOH) and alternariol monomethyl ether (AME) in tomato samples. Influence of several extraction parameters that affect PLE efficiency were evaluated for the simultaneous extraction of both mycotoxins in the selected samples. AOH and AME were optimally extracted using MeOH/water (25:75, v/v) at 70°C as solvent, a pressure of 1000 psi and a single extraction cycle. The resulting PLE extracts were pre-concentrated by molecularly imprinted solid phase extraction (MISPE) cartridges followed of analysis by HPLC with fluorescence detection (λexc = 258, λem = 440 nm). The proposed method was applied to the analysis of AOH and AME in fortified tomato samples (20-72 µg· kg-1) with recoveries of 84-97% (RSD < 8%, n = 6) for AOH and 67-91% (RSD < 13%, n = 6) for AME. The detection limit for AOH and AME were 7 and 15 µg· kg-1, respectively. The ensuing PLE-MISPE-HPLC-FLD method was validated for the analysis of both mycotoxins in tomato samples in accordance with European Commission Decision 2002/657/EC.


Subject(s)
Fluorescence , Food Contamination/analysis , Liquid-Liquid Extraction , Mycotoxins/analysis , Solanum lycopersicum/chemistry , Chromatography, High Pressure Liquid , Molecular Imprinting , Pressure , Solid Phase Extraction , Spectrometry, Fluorescence
4.
J Chromatogr A ; 1425: 231-9, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26632518

ABSTRACT

Molecularly imprinted porous polymer microspheres have been prepared for selective binding of alternariol (AOH), a phenolic mycotoxin produced by Alternaria fungi. In order to lead the synthesis of recognition materials, four original AOH surrogates have been designed, prepared and characterized. They bear different number of phenol groups in various positions and different degree of O-methylation on the dibenzo[b,d]pyran-6-one skeleton. A comprehensive library of mixtures of basic, acidic or neutral monomers, with divinylbenzene or ethyleneglycol dimethacrylate as cross-linkers, were polymerized at a small scale in the presence of the four molecular mimics of the toxin molecule. This polymer screening has allowed selection of the optimal composition of the microbeads (N-(2-aminoethyl)methacrylamide, EAMA, and ethylene glycol dimethacrylate). The latter are able to bind AOH in water-acetonitrile (80:20, v/v) with an affinity constant of 109±10mM(-1) and a total number of binding sites of 35±2µmolg(-1), being alternariol monomethylether the only competitor species. Moreover, (1)H NMR titrations have unveiled a 1:2 surrogate-to-EAMA stoichiometry, the exact interaction sites and a binding constant of 1.5×10(4)M(-2). A molecularly imprinted solid phase extraction (MISPE) method has been optimized for selective isolation of the mycotoxin from aqueous samples upon a discriminating wash with 3mL of acetonitrile/water (20:80, v/v) followed by determination by HPLC with fluorescence detection. The method has been applied, in combination to ultrasound-assisted extraction, to the analysis of AOH in tomato samples fortified with the mycotoxin at five concentration levels (33-110µgkg(-1)), with recoveries in the range of 81-103% (RSD n=6). To the best of our knowledge, this is the first imprinted material capable of molecularly recognizing this widespread food contaminant.


Subject(s)
Acrylic Resins/chemistry , Lactones/chemistry , Mycotoxins/chemistry , Chromatography, High Pressure Liquid/methods , Fluorescence , Molecular Imprinting , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...