Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Integr Comp Biol ; 60(5): 1147-1159, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32777043

ABSTRACT

Sonations are sounds that animals produce with structures other than the vocal apparatus for communication. In birds, many sonations are usually produced with modified flight feathers through diverse kinematic mechanisms. For instance, aeroelastic fluttering of feathers produces tonal sound when airflow exceeds a threshold velocity and induces flight feathers to oscillate at a constant frequency. The Fork-tailed flycatcher (Tyrannus savana) is a Neotropical bird with both migratory and year-round resident subspecies that differ in the shape of the outer primary feathers of their wings. By integrating behavioral observations, audio recordings, and high-speed videos, we find that male Fork-tailed flycatchers produce sonations with their outer primary feathers P8-10, and possibly P7. These sounds are produced during different behavioral contexts including: the pre-dawn display, intraspecific territorial disputes, when attacking potential nest predators, and when escaping. By placing feathers in a wind tunnel, we elicited flutter at frequencies that matched the acoustic signature of sounds recorded in the wild, indicating that the kinematic mechanism responsible for sound production is aeroelastic flutter. Video of wild birds indicated that sonations were produced during the downstroke. Finally, the feathers of migratory (T.s.savana) and year-round resident (T.s.monachus) Fork-tailed flycatchers flutter in feather locations that differ in shape between the subspecies, and these shape differences between the subspecies result in sounds produced at different frequencies.


Subject(s)
Passeriformes , Songbirds , Animal Communication , Animals , Feathers , Flight, Animal , Male
2.
Curr Biol ; 30(7): 1312-1321.e6, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32197080

ABSTRACT

Migratory animals move up to thousands of kilometers every year [1]. Losses of migration (i.e., migratory drop-offs) occur when individuals of a migratory species stop migrating and establish founder sedentary populations, a phenomenon documented in birds [2-5] and butterflies [6]. In theory, losses-and also gains-of migration might promote speciation if sedentary and migratory populations become reproductively isolated [7-9]. Because migratory and sedentary strategies involve alternative physiological, behavioral, and morphological traits [10-13], divergence along multiple axes of organismal function is expected to accompany switches in migratory behavior, potentially accelerating speciation. We present evidence of speciation driven by a migratory drop-off in the fork-tailed flycatcher (Tyrannus savana) resulting in reproductive isolation likely driven by changes in breeding schedules (allochronic speciation [13-15]) and geographic isolation of breeding grounds (allopatric speciation [16]). Phylogenetic analyses across New World flycatchers (Tyrannidae) showed that an association between speciation and drop-offs is also observable at a macroevolutionary scale. Loss of migration was significantly more frequent than its gain, and speciation rates of migratory and partially migratory lineages (i.e., species having both migratory and sedentary populations) exceeded those of sedentary lineages. Models of trait evolution indicated that partial migration is an intermediate step between migratory and sedentary states in this family. Given that partial migration is widespread across migratory animals (e.g., of all migratory birds, ca. 51% are partially migratory [5]), speciation via switches in migratory behavior might be an important yet overlooked mechanism of animal diversification.


Subject(s)
Animal Migration , Genetic Speciation , Passeriformes/physiology , Reproductive Isolation , Animals , Passeriformes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...