Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042299

ABSTRACT

Herein, efficient antimicrobial porous surfaces were prepared by breath figures approach from polymer solutions containing low content of block copolymers with high positive charge density. In brief, those block copolymers, which were used as additives, are composed of a polystyrene segment and a large antimicrobial block bearing flexible side chain with 1,3-thiazolium and 1,2,3-triazolium groups, PS54-b-PTTBM-M44, PS54-b-PTTBM-B44, having different alkyl groups, methyl or butyl, respectively. The antimicrobial block copolymers were blended with commercial polystyrene in very low proportions, from 3 to 9 wt %, and solubilized in THF. From these solutions, ordered porous films functionalized with antimicrobial cationic copolymers were fabricated, and the influence of alkylating agent and the amount of copolymer in the blend was investigated. Narrow pore size distribution was obtained for all the samples with pore diameters between 5 and 11 µm. The size of the pore decreased as the hydrophilicity of the system increased; thus, either as the content of copolymer was augmented in the blend or as the copolymers were quaternized with methyl iodide. The resulting porous polystyrene surfaces functionalized with low content of antimicrobial copolymers exhibited remarkable antibacterial efficiencies against Gram positive bacteria Staphylococcus aureus, and Candida parapsilosis fungi as microbial models.

2.
Polymers (Basel) ; 10(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-30966276

ABSTRACT

The aim of this work is the preparation of contact active antimicrobial films by blending copolymers with quaternary ammonium salts and polyacrylonitrile as matrix material. A series of copolymers based on acrylonitrile and methacrylic monomers with quaternizable groups were designed with the purpose of investigating the influence of their chemical and structural characteristics on the antimicrobial activity of these surfaces. The biocide activity of these systems was studied against different microorganisms, such as the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Pseudomona aeruginosa and the yeast Candida parapsilosis. The results confirmed that parameters such as flexibility and polarity of the antimicrobial polymers immobilized on the surfaces strongly affect the efficiency against microorganisms. In contrast to the behavior of copolymers in water solution, when they are tethered to the surface, the active cationic groups are less accessible and then, the mobility of the side chain is critical for a good contact with the microorganism. Blend films composed of copolymers with high positive charge density and chain mobility present up to a more than 99.999% killing efficiency against the studied microorganisms.

3.
Macromol Biosci ; 17(11)2017 11.
Article in English | MEDLINE | ID: mdl-29034601

ABSTRACT

Herein, contact active antimicrobial films are prepared by simply blending cationic amphiphilic block copolymers with commercial polystyrene (PS). The copolymers are prepared by combining atom transfer radical polymerization and "click chemistry." A variety of copolymers are synthesized, and composed of a PS segment and an antimicrobial block bearing flexible side chain with thiazole and triazole groups, 4-(1-(2-(4-methylthiazol-5-yl)ethyl)-1H-1,2,3-triazol-4-yl) butyl methacrylate (TTBM). The length of the TTBM block is varied as well as the alkylating agent. Different films are prepared from N,N-dimethylformamide solution, containing variable PS-b-PTTBM/PS ratio: from 0 to 100 wt%. Remarkably, the blend films, especially those with 30 and 50 wt% of copolymers, exhibit excellent antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi, even higher than films prepared exclusively from the cationic copolymers. Blends composed of 50 wt% of the copolymers present a more than 99.999% killing efficiency against the studied microorganisms. The better activity found in blends can be due to the higher roughness, which increases the surface area and consequently the contact with the microorganisms. These results demonstrate that the use of blends implies a reduction of the content of antimicrobial agent and also enhances the antimicrobial activity, providing new insights for the better designing of antimicrobial coatings.


Subject(s)
Anti-Infective Agents/pharmacology , Polymers/chemistry , Adsorption , Bacteria/drug effects , Microbial Sensitivity Tests , Microscopy, Atomic Force , Molecular Weight , Proton Magnetic Resonance Spectroscopy , Serum Albumin, Bovine/metabolism , Surface Properties , Surface-Active Agents/chemistry , Water/chemistry
4.
Colloids Surf B Biointerfaces ; 140: 94-103, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26741269

ABSTRACT

New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.


Subject(s)
Anti-Infective Agents/chemistry , Latex/chemistry , Methacrylates/chemistry , Polymers/chemistry , Anti-Infective Agents/pharmacology , Erythrocytes/drug effects , Fungi/drug effects , Fungi/growth & development , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/ultrastructure , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/ultrastructure , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Particle Size
5.
Acta Biomater ; 25: 86-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26219860

ABSTRACT

A series of six copolymeric families, P(AN-co-MTAs) with various molar fractions of acrylonitrile (fAN) and methacrylates (fMTA) based on 1,3-thiazole and 1,2,3-triazole pendant groups with several spacers of different length and nature (alkyl or succinic), have been synthesized by conventional radical polymerization. The molar fraction of acrylonitrile in the copolymers (FAN) was determined by CHNS elemental analysis. The copolymers were also characterized by ATR-FTIR and molecular weights were determined by size exclusion chromatography (SEC). Due to the nucleophilic nature of the azole heterocycles the copolymers have been easily modified by N-alkylation reaction with butyl iodide leading to polyelectrolytes of diverse amphiphilic balance, P(AN-co-MTAs-BuI). The degree of quaternization (DQ) was quantitative in all instances and was determined by (1)H NMR spectroscopy. Dynamic light scattering (DLS) measurements were performed in order to determine the particle size and the charge density of the systems. The antimicrobial activity of the copolymers was studied in terms of minimal inhibitory concentration (MIC) against the Gram-positive bacteria Staphylococcus aureus, the Gram-negative Pseudomonas aeruginosa and the yeast Candida parapsilosis, as well as the cytotoxic activity toward human red blood cells (RBCs). These types of amphiphilic copolycations presented high selectivity (>300) maintaining moderate to good antimicrobial activity (MIC=4-64 µg/mL) and being non-hemolytic even at high molar fractions of AN in the copolymers compared to PMTAs-BuI homopolymers. Moreover, two examples of acrylonitrile-enriched copolymers (FAN=0.6) presented an excellent time-killing efficiency against microorganisms with 99.9% of killing ranging from 5 to 30 min. Besides, important changes in the morphology of the cell envelop of the microorganisms after treatment with P(AN-co-MTAs) were observed by Field Emission Scanning Electron Microscopy (FE-SEM) compared to untreated samples. These results indicate that these quaternized copolymers (QUATs) behave like the corresponding PMTAs-BuI homopolymers, being microbiostatic and also highly effective microbiocidal agents.


Subject(s)
Acrylonitrile/pharmacology , Anti-Infective Agents/pharmacology , Materials Testing , Methacrylates/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology , Acrylonitrile/chemical synthesis , Acrylonitrile/chemistry , Bacteria/drug effects , Bacteria/ultrastructure , Hemolysis/drug effects , Humans , Kinetics , Methacrylates/chemical synthesis , Methacrylates/chemistry , Microbial Sensitivity Tests , Polymers/chemical synthesis , Polymers/chemistry , Proton Magnetic Resonance Spectroscopy , Thiazoles/chemical synthesis , Thiazoles/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , Yeasts/drug effects
6.
Biomacromolecules ; 16(6): 1844-54, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25944495

ABSTRACT

Two series of antimicrobial polymethacrylates (PMTAs) bearing mono and bis-cationic quaternary ammonium cations (QUATs) were prepared by controlled N-alkylation of 1,3-thiazole and 1,2,3-triazole pendant groups with butyl iodide (PMTAs-BuI). The degree of quaternization (DQ) of the azole heterocycles was monitored by (1)H NMR spectroscopy over a wide range of reaction times. Spectra analysis of the (1)H NMR aromatic region allowed to characterize and quantify the different species involved and, therefore, to control the chemical composition distribution of the amphiphilic polycations. The polymer charge density and the hydrodynamic sizes were measured by zeta potential and dynamic light scattering (DLS), respectively. Consequently, the relationship between structure and antibacterial properties and toxicity was studied. Interestingly, these polyelectrolytes present excellent selective toxicity against bacteria being nonhemolytic even at low values of DQ. Furthermore, they were also evaluated for their microbial time-killing efficiency, presenting a 3 log-reduction in only 15 min. Additionally, the bacteria cell morphology treated with PMTAs-BuI was analyzed.


Subject(s)
Anti-Infective Agents/chemical synthesis , Polymethacrylic Acids/chemistry , Thiazoles/chemistry , Triazoles/chemistry , Alkylation , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
7.
Biomacromolecules ; 16(1): 295-303, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25438196

ABSTRACT

Polymers with quaternary ammonium groups such as quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMAQ) have been used as antimicrobial agents because of their demonstrated good antimicrobial activities against a huge number and types of microbes, although their cytotoxicity is also well-known. In this work block copolymers based on PDMAEMAQ were synthesized containing hydrophobic segments of poly(butyl methacrylate) to improve the antimicrobial activity and glycomonomer units with the aim of decreasing the cytotoxicity of the polymers. Hydrophobic butyl methacrylate (BMA) blocks were chain extended by statistical and block copolymers of DMAEMA and 2-{[(d-glucosamin-2-N-yl)carbonylethyl methacrylate (HEMAGl) glycomonomer of different compositions. In order to find the balance between antimicrobial activity and cytotoxicity, the selectivity index of each polymer was obtained from minimum inhibitory concentrations (MIC) and white and red blood cells toxicity measurements.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Methacrylates/pharmacology , Nylons/pharmacology , Anti-Infective Agents/chemical synthesis , Erythrocytes/drug effects , Hydrophobic and Hydrophilic Interactions , Leukocytes/drug effects , Methacrylates/chemical synthesis , Microbial Sensitivity Tests , Nylons/chemical synthesis , Polymers/chemistry , Polymers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...