Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychol Res ; 86(1): 268-283, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33559014

ABSTRACT

Perceptual information about unfolding events is important for guiding decisions about when and how to move in real-world action situations. As an exemplary case, road-crossing is a perceptual-motor task where age has been shown to be a strong predictor of risk due to errors in action-based decisions. The present study investigated age differences between three age groups (Children: 10-12 years old; Adults: 19-39 years old; Older Adults: 65 + year olds) in the use of perceptual information for selection, timing, and control of action when crossing a two-way street in an immersive, interactive virtual reality environment. Adults and children selected gaps to cross that were consistent with the use of a time-based information variable (tau), whereas older adults tuned less into the time-based variable (tau) to guide road-crossing decisions. For action initiation and control, children and adults also showed a strong ability to precisely time their entry with respect to the lead vehicle maximising the available time to cross and coordinating walking movements with the tail vehicle to ensure they were not on a collision course. In contrast, older adults delayed action initiation and showed difficulty coordinating self-movement with the approaching vehicle. This study and its results tie together age-based differences in the three components of action decision-making (selection, timing and control) within a unified framework based on perceptual information. The implications of these age-related differences in action decisions and crossing behaviours are discussed in the context of road safety.


Subject(s)
Accidents, Traffic , Longevity , Age Factors , Aged , Child , Child, Preschool , Decision Making , Humans , Walking
2.
Front Neurol ; 9: 681, 2018.
Article in English | MEDLINE | ID: mdl-30174648

ABSTRACT

In Parkinson's disease (PD) self-directed movement, such as walking, is often found to be impaired while goal directed movement, such as catching a ball, stays relatively unaltered. This dichotomy is most clearly observed when sensory cueing techniques are used to deliver patterns of sound and/or light which in turn act as an external guide that improves gait performance. In this study we developed visual cues that could be presented in an immersive, interactive virtual reality (VR) environment. By controlling how the visual cues (black footprints) were presented, we created different forms of spatial and temporal information. By presenting the black footprints at a pre-specified distance apart we could recreate different step lengths (spatial cues) and by controlling when the black footprints changed color to red, we could convey information about the timing of the foot placement (temporal cues). A group of healthy controls (HC; N = 10) and a group of idiopathic PD patients (PD, N = 12) were asked to walk using visual cues that were tailored to their own gait performance [two spatial conditions (115% [N] and 130% [L] of an individual's baseline step length) and three different temporal conditions (spatial only condition [NT], 100 and 125% baseline step cadence)]. Both groups were found to be able to match their gait performance (step length and step cadence) to the information presented in all the visual cue conditions apart from the 125% step cadence conditions. In all conditions the PD group showed reduced levels of gait variability (p < 0.05) while the HC group did not decrease. For step velocity there was a significant increase in the temporal conditions, the spatial conditions and of the interaction between the two for both groups of participants (p < 0.05). The coefficient of variation of step length, cadence, and velocity were all significantly reduced for the PD group compared to the HC group. In conclusion, our results show how virtual footsteps presented in an immersive, interactive VR environment can significantly improve gait performance in participants with Parkinson's disease.

3.
Parkinsons Dis ; 2018: 2957427, 2018.
Article in English | MEDLINE | ID: mdl-30159137

ABSTRACT

Studying freezing of gait (FOG) in the lab has proven problematic. This has primarily been due to the difficulty in designing experimental setups that maintain high levels of ecological validity whilst also permitting sufficient levels of experimental control. To help overcome these challenges, we have developed a virtual reality (VR) environment with virtual doorways, a situation known to illicit FOG in real life. To examine the validity of this VR environment, an experiment was conducted, and the results were compared to a previous "real-world" experiment. A group of healthy controls (N = 10) and a group of idiopathic Parkinson disease (PD) patients without any FOG episodes (N = 6) and with a history of freezing (PD-f, N = 4) walked under three different virtual conditions (no door, narrow doorway (100% of shoulder width) and standard doorway (125% of shoulder width)). The results were similar to those obtained in the real-world setting. Virtual doorways reduced step length and velocity while increasing general gait variability. The PD-f group always walked slower, with a smaller step length, and showed the largest increases in gait variability. The narrow doorway induced FOG in 66% of the trials, while the standard doorway caused FOG in 29% of the trials. Our results closely mirrored those obtained with real doors. In short, this methodology provides a safe, personalized yet adequately controlled means to examine FOG in Parkinson's patients, along with possible interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...