Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Bioinform ; 9(3): 199, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22829570

ABSTRACT

DNA microarrays have contributed to the exponential growth of genomic and experimental data in the last decade. This large amount of gene expression data has been used by researchers seeking diagnosis of diseases like cancer using machine learning methods. In turn, explicit biological knowledge about gene functions has also grown tremendously over the last decade. This work integrates explicit biological knowledge, provided as gene sets, into the classication process by means of Variable Precision Rough Set Theory (VPRS). The proposed model is able to highlight which part of the provided biological knowledge has been important for classification. This paper presents a novel model for microarray data classification which is able to incorporate prior biological knowledge in the form of gene sets. Based on this knowledge, we transform the input microarray data into supergenes, and then we apply rough set theory to select the most promising supergenes and to derive a set of easy interpretable classification rules. The proposed model is evaluated over three breast cancer microarrays datasets obtaining successful results compared to classical classification techniques. The experimental results shows that there are not significant differences between our model and classical techniques but it is able to provide a biological-interpretable explanation of how it classifies new samples.


Subject(s)
Algorithms , Computational Biology/methods , DNA/genetics , Databases, Genetic/classification , Gene Expression Regulation , Knowledge , Breast Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...