Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Foods ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731677

ABSTRACT

The disruptive effect exerted by high-power ultrasound on grape cell walls enhances phenolic extraction, improving chromatic characteristics during red wine maceration. However, short maceration times may, sometimes, hinder this enhancement, and this effect could be attributed to the suspended cell wall material formation facilitated by sonication. This suspended material, having a strong affinity for phenolic compounds, can lead to their precipitation and elimination during subsequent vinification stages and, consequently, a significant portion of extracted phenolic compounds may not contribute to the final phenolic composition of the wine, impacting its chromatic features. To demonstrate this effect, sonicated grapes of two different varieties were vinified with No modified process that eliminated part of this suspended material. Results confirm our hypothesis; that is, the lack of positive outcomes in some cases is due to phenolic compound adsorption on suspended material.

2.
Food Chem ; 448: 139055, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38554587

ABSTRACT

Due to allergenic concerns, only pea, potato, and wheat proteins have been approved as alternatives for replacing animal-based fining agents in wines. In pursuit of other substitutes, this work aimed to determine the fining ability of amaranth (Amaranthus caudatus L.) proteins (AP) in red wine, compared to quinoa (Chenopodium quinoa Willd.) (QP) and a commercial pea protein. Phenolic and volatile composition, as well as color characteristics, were analyzed. AP was as effective as QP at decreasing condensed tannins, with AP at 50 g/hL being the most effective treatment (25.6% reduction). QP and AP produced a minor or no statistical change in the total anthocyanins and wine color intensity. They reduced the total ester concentration, but the total alcohols remained unchanged. The outcomes of AP and QP were similar, and sometimes better than the pea proteins, thus suggesting that they could be promising options for the development of novel fining agents.


Subject(s)
Amaranthus , Chenopodium quinoa , Plant Proteins , Wine , Amaranthus/chemistry , Chenopodium quinoa/chemistry , Plant Proteins/chemistry , Plant Proteins/analysis , Wine/analysis , Phenols/chemistry , Phenols/analysis , Plant Extracts/chemistry , Color
3.
J Agric Food Chem ; 72(4): 1928-1937, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-36840676

ABSTRACT

This paper studied the effect of conventional pre-fermentative techniques (direct pressing "CP" and cold maceration "CM") and an innovate technique (high power ultrasounds "S"), applied to Viogner and Monastrell grapes on the polysaccharide content of the musts, white and rosé wines, and after six months of bottle aging. The results showed that the longer pre-fermentation maceration time applied with the CM technique compared to the short ultrasonic maceration was key in the extraction of polysaccharides from the grape to the must. CP treatment produced wines with the lowest content of total soluble polysaccharide families since it was the least intense pretreatment for the disruption of the grape berry cell wall polysaccharides. Ultrasonic pretreatment could be used as a new tool to increase the solubilization of polysaccharides in wines, positively affecting the wine colloidal properties. During bottle aging, there wasn't a clear effect of pretreatments on the evolution of polysaccharides.


Subject(s)
Vitis , Wine , Humans , Wine/analysis , Fermentation , Polysaccharides/analysis , Fruit/chemistry
4.
Foods ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37297481

ABSTRACT

The disruptive effect exerted by high-power ultrasound (US) on grape cell walls is established as the reason behind the chromatic, aromatic and mouthfeel improvement that this treatment causes in red wines. Given the biochemical differences that exist between the cell walls of different grape varieties, this paper investigates whether the effect of the application of US in a winery may vary according to the grape variety treated. Wines were elaborated with Monastrell, Syrah and Cabernet Sauvignon grapes, applying a sonication treatment to the crushed grapes using industrial-scale equipment. The results showed a clear varietal effect. The wines made with sonicated Syrah and Cabernet Sauvignon grapes showed an important increase in the values of color intensity and concentration of phenolic compounds, and these increases were higher than those observed when sonication was applied to Monastrell crushed grapes, whereas Monastrell wines presented the highest concentration in different families of polysaccharides. These findings correlate with the differences in the composition and structure of their cell walls since those of Monastrell grapes presented biochemical characteristics associated with a greater rigidity and firmness of the structures.

5.
J Sci Food Agric ; 103(13): 6616-6624, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37254599

ABSTRACT

BACKGROUND: The application of high-power ultrasound (US) has been studied extensively to obtain value-added red wines using short maceration times. It is a technique of wide interest for the extraction of aromatic compounds and compounds responsible for color, so it could also be an important tool to use in the elaboration process of rosé wines. Thus, this study focused on the effect of the application of US on the phenolic, aromatic, and sensorial profile of rosé wines. For this, three different types of rosé wine were produced: a control with direct pressing after crushing, another wine obtained from a 4 h macerated must, and a wine whose crushed and destemmed grape was sonicated and subsequently pressed. RESULTS: The results showed a higher color intensity and a higher total polyphenol and anthocyanin content in the wine obtained from sonicated grape compared to both control wine and that obtained from grape macerated for 4 h. Ultrasound treatment enhanced the extraction of varietal volatile compounds in must, especially the free faction of terpenes and norisoprenoids. It also gave rise to wines with a higher concentration of C6 alcohols and other compounds such as guaiacol and 4-vinylguaiacol, but led to fewer fatty acids, especially C6, C4 and C8 acids. Sensorially these wines showed intense aromas of red fruits and flowers, while no defects in aroma or astringency were found. CONCLUSIONS: The color and sensory profile of the resulting wines indicate that the US may be an interesting tool for obtaining quality rosé wines, replacing the maceration stage and reducing potential oxidation problems. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Vitis , Wine , Anthocyanins/analysis , Fruit/chemistry , Odorants/analysis , Technology , Vitis/chemistry , Wine/analysis
6.
J Sci Food Agric ; 103(7): 3613-3620, 2023 May.
Article in English | MEDLINE | ID: mdl-36208475

ABSTRACT

BACKGROUND: High-power ultrasound is a novel and non-thermal technique normally used in red vinification to increase the extraction of phenolic compounds. However, few studies have been carried out on its effect on the extraction of aroma compounds and their precursors in white grapes. This study evaluates the effect of high-power ultrasound at winery scale in the maceration of Viognier grapes on the content of varietal volatile compounds (free and glycosidically bound) in musts and wines, in comparison with wines from direct pressing and from short skin maceration. RESULTS: The pre-fermentative ultrasound treatment of the grapes produced an increase in most of the varietal compounds of musts and wines, both in the free fraction and in the bound one, especially in the C6 alcohols, terpenes and norisoprenoids, some of them of sensory relevance, while the effect on esters and lactones was less evident. Ultrasound maceration allowed us to obtain wines of higher aromatic intensity, with a more pronounced varietal character. CONCLUSION: The pre-fermentative ultrasound treatment of Viognier grapes increases the aromatic potential of the wines, as it favors the extraction of free and bound varietal volatile compounds. In addition, it allows the maceration time of the grapes to be reduced compared to conventional pre-fermentation techniques, thus avoiding oxidative processes that could negatively affect the aroma of the wines. © 2022 Society of Chemical Industry.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Alcohols/analysis , Odorants/analysis , Terpenes/analysis , Vitis/chemistry , Volatile Organic Compounds/analysis , Wine/analysis , Ultrasonics
7.
Biomolecules ; 12(10)2022 10 20.
Article in English | MEDLINE | ID: mdl-36291731

ABSTRACT

One of the biggest problems with the use of traditional fining agents is that some of them present allergenic characteristics or are not suitable for vegan consumers due to their animal origin. An alternative to these traditional proteinaceous agents could be cell walls from grape pulp. This material could be used to modify the final phenolic concentration of a wine due to its affinity for phenolic compounds. In this study, the ability of freeze-dried grape pulp fiber, rich in pulp cell walls, to act as a fining agent was analyzed in wines from three different varieties: Cabernet Sauvignon, Syrah, and Monastrell. After the use of this material, the wine chromatic characteristics and total tannin concentration were analyzed by spectrophotometric and chromatographic techniques. In addition, the wines were contaminated with ochratoxin A and histamine to check whether this material could also be a tool for removing these wine contaminants. The pulp fiber presented a high capacity to retain phenolic compounds, especially tannins; however, there were differences depending on the studied wine. The largest reduction in tannin concentration after fining was observed when this material was used in Cabernet Sauvignon wines (23%), whereas for Monastrell wines the reduction was lower (18.3%) and even lower for Syrah wines (14.3%). This fining agent also reduced the anthocyanin concentration of the three red wines, although to a lesser extent than the reduction observed for tannins. A really interesting result was that the addition of this fining agent reduced the concentration of ochratoxin A by 50% in all the studied wines.


Subject(s)
Vitis , Vitis/chemistry , Anthocyanins/analysis , Histamine , Tannins/analysis , Phenols/analysis , Dietary Fiber/analysis
8.
Food Chem ; 372: 131282, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34638064

ABSTRACT

With the objective of improving both the extraction of phenolic compounds from grapes and their maintenance in the final wine, we compared the effect of favoring phenolic extraction with a pectolytic-based maceration enzyme with that of favoring both phenolic extraction and the partial elimination of the suspended material using a pectolytic-based clarification enzyme. The phenolic composition of the final wines and those adsorbed to the precipitated lees were analyzed. Both enzymes increased wine color intensity and phenolic content, but the best results were observed when the clarification enzyme was used. This enzyme generated the largest losses of phenolics bound to precipitated lees. However, this resulted in a positive effect, the precipitation of lees rich in phenolic compounds probably created a pronounced gradient of phenolic compounds from grapes to must/wine and better chromatic characteristics in the final wine, compared with the wine made using a traditional maceration enzyme.


Subject(s)
Vitis , Wine , Anthocyanins/analysis , Color , Phenols/analysis , Polygalacturonase , Wine/analysis
9.
Molecules ; 26(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34361607

ABSTRACT

The application of high-power ultrasounds (US) at 28 kHz to the crushed grapes and the use of different pomace contact times caused changes in the content and composition of monosaccharides and polysaccharides in the musts and wines. These differences were maintained from the moment of pressing (end of maceration) until the end of the alcoholic fermentation. The US increased the content of monosaccharides and polysaccharides in the musts by facilitating their extraction from the solid parts during maceration. The application of medium maceration time (3 days) to sonicated grapes led to an extraction of polysaccharides rich in arabinose and galactose, rhamnogalacturonan type II (RG-II) and mannoproteins (MP), similar to that observed in the control wines made with an extended maceration of 7 days (968.21 vs. 1029.45; 895.04 vs. 1700.50; 356.81 vs. 343.95, respectively). This fact was attributed to a higher extraction in the must during the sonication process and to an important release of pectic polysaccharides during the pressing of the sonicated pomace, which is reported here for the first time. Therefore, the US technology could be useful for increasing the polysaccharide content in the wines or for reducing the maceration time needed to achieve certain levels of wine polysaccharides.


Subject(s)
Fruit/chemistry , Polysaccharides/analysis , Sonication/methods , Vitis/chemistry , Wine/analysis , Food Handling
10.
Food Chem ; 356: 129669, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33812192

ABSTRACT

This paper studied the effect on the molecular weight and polysaccharide composition of musts and wines of the application of high-power ultrasound (US) at 20 and 28 kHz on crushed grapes. Two different pomace maceration times (short and mid) were tested for sonicated and control vinifications. A long pomace maceration time was also tested for non-treated wines. In must samples, US significantly increased the content of monosaccharides and polysaccharides rich in arabinose and galactose (PRAG), and the average molecular weight of smaller PRAG, mannoproteins (MP) or mannans. The 28 kHz had a major effect on most wine monosaccharides and grape polysaccharides. The wine obtained from sonicated grapes at 28 kHz and with mid maceration had higher rhamnogalacturonans type II and PRAG content than its control, and closer polysaccharide and monosaccharide content to long maceration control wines. No significant differences were obtained in the MP content between sonicated and control wines.


Subject(s)
Polysaccharides/analysis , Sonication , Vitis/metabolism , Wine/analysis , Chromatography, Gel , Fruit/chemistry , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Molecular Weight , Monosaccharides/analysis , Monosaccharides/chemistry , Polysaccharides/chemistry , Principal Component Analysis , Vitis/chemistry
11.
Molecules ; 26(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672299

ABSTRACT

This study presents the effect of the application of high-power ultrasound to crushed grapes, at a winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines. Two different frequencies (20 kHz and 28 kHz) were tested and the combination of grape sonication and different maceration times on wine aroma was also evaluated. The volatile compounds were isolated by solid phase extraction and analyzed by gas chromatography-mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis. Sonication produced an increase in the concentration of free varietal compounds such as C6 alcohols, terpenes and norisoprenoids in musts and also in wines made by 48 h of skin maceration, being less efficient in the extraction of the bound fraction. Fermentation compounds were also positively affected by ultrasound treatment, although this effect was variable depending on the frequency used, the maceration time and the type of compound. All the wines made from sonicated grapes had better scores in the evaluated olfactory attributes with respect to the control wines. Our results indicate that sonication could produce an increase in the content of some volatile compounds of sensory relevance, obtaining wines with an aroma quality similar or higher than those elaborated with longer maceration times.


Subject(s)
Glycosides/analysis , Volatile Organic Compounds/analysis , Wine/analysis , Fermentation , Gas Chromatography-Mass Spectrometry , Glycosides/metabolism , Ultrasonic Waves , Volatile Organic Compounds/metabolism
12.
Molecules ; 26(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540867

ABSTRACT

This study evaluates the capacity of four hydrolytic enzymes to limit the interactions between grape cell-walls and tannins and/or to favor tannin desorption. Adsorption and desorption tests were conducted by mixing a commercial seed tannin with purified skin cell-walls from Syrah grapes, in the presence or absence of hydrolytic enzymes, in a model-wine solution. The effects of the enzymes were evaluated by measuring the tannins in solution by High Performance Liquid Chromatography (HPLC) and the changes in the cell wall polysaccharide network by Comprehensive Microarray Polymer Profiling (COMPP) while the polysaccharides liberated from cell walls were analyzed by Size Exclusion Chromatography (SEC). The results showed that the enzymes limited the interaction between tannins and cell walls, especially cellulase, pectinase and xylanase, an effect associated with the cell wall structural modifications caused by the enzymes, which reduced their capacity to bind tannins. With regards to the tannin desorption process, enzymes did not play a significant role in liberating bound tannins. Those enzymes that showed the highest effect in limiting the adsorption of tannins and in disorganizing the cell wall structure, cellulase and pectinase, did not lead to a desorption of bound tannins, although they still showed a capacity of affecting cell wall structure. The results indicate that enzymes are not able to access those polysaccharides where tannins are bound, thus, they are not a useful tool for desorbing tannins from cell walls. The practical importance implications of these findings are discussed in the manuscript.


Subject(s)
Cell Wall/chemistry , Enzymes/metabolism , Tannins/chemistry , Vitis/cytology , Hydrolysis , Seeds/chemistry , Solubility , Wine/analysis
13.
Biomolecules ; 11(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33466474

ABSTRACT

Today, the production of wine and beer is a worldwide industry worth millions of euros annually, with breweries and wineries throughout the globe [...].


Subject(s)
Beer/analysis , Wine/analysis , Antioxidants/analysis , Health , Humans , Polyphenols/analysis
14.
Crit Rev Food Sci Nutr ; 61(10): 1605-1615, 2021.
Article in English | MEDLINE | ID: mdl-32423236

ABSTRACT

Grape wine is the most widely consumed fruit wine in the world. With the increasing diversification of consumers' needs, the variety of fruit wines in the market is becoming more and more abundant. Whether it is the production of grape wine or other fruit wines these processes are inseparable from the participation of enzymes. The quality of these wines is closely related to the application of enzymes in the winemaking process. Enzymes are involved in pretreatment, fermentation, filtration, flavoring, aging and storage of fruit wines. This review systematically illustrated the role of pectinase, ß-glucanase, ß-glucosidase, glucose oxidase, lysozyme, protease, tannase and urease in the production of wines and their current production status and also provided a theoretical basis for better application of various enzymes in the production of various fruit wines. This knowledge could be great significance to improve the quality of fruit wines and reduce the production costs in the fruit wine industry.


Subject(s)
Vitis , Wine , Fermentation , Fruit , Polygalacturonase , Wine/analysis
15.
Foods ; 11(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35010145

ABSTRACT

The final concentration of phenolic compounds in wines is usually lower than what might be expected, given their concentration in grapes. This is in part due to the interactions between cell walls from grapes and yeast with phenolics during red winemaking. Most of these aggregates are insoluble and end up precipitating, forming part of the lees. The objective of this study is to determine the capacity of ultrasounds and/or enzymes treatments (ß-glucanase and a pectolytic enzyme) to release the anthocyanins and tannins adsorbed in the lees. The ultrasound (US) applied for 120 min slightly favored the extraction of anthocyanins and doubled tannin extraction. Shorter sonication times did not show any positive effect. The combination of ß-glucanase and pectolytic enzyme was always more effective in the liberation of anthocyanins (both no-acylated and acylated anthocyanins) and tannins than the enzymes acting separately. The combination of US (120 min), ß-glucanase and pectolytic enzyme showed an additive effect, increasing the extraction of phenolic compounds with respect to the individual treatments and also releasing a large quantity of low molecular weight polysaccharides, compounds of enological importance. These results of this study could be of enological interest, facilitating and accelerating the aging on lees process, through the liberation of polysaccharides and the recovery of the phenolic compounds lost during vinification.

16.
Foods ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932844

ABSTRACT

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottled wines is detrimental to their quality and can even be a legal issue in some countries. Different methodologies are used in wineries to substitute the classical low-temperature stabilization process, which is an effective but costly process. This study comprises two years of experiments with red wines at an industrial scale. In the first year of the experiment, two subtractive methods (ionic exchange resins and electrodialysis) were tested, whereas two additive methods (potassium polyaspartate and carboxymethyl cellulose, both of them containing gum Arabic) were tested the second year. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics, were followed during one year in the bottle. The results indicate that carboxymethyl cellulose and potassium polyaspartate (both combined with gum Arabic) were best at maintaining the sensory and chromatic characteristics during storage, with potassium polyaspartate providing a good tartaric stability to the treated wine and this wine being, in general, preferred in a sensory analysis test.

17.
J Agric Food Chem ; 68(47): 13439-13449, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32975414

ABSTRACT

In this study, the combined effect of partial postharvest dehydration and long-term ozone treatment was evaluated at 10 and 20% weight loss as a strategy to induce compositional changes in grape skin flavanols. Two separate trials were carried out in thermohygrometric-controlled chambers at 20 °C and 70% relative humidity. The first trial was conducted under an ozone-enriched atmosphere at 30 µL/L, whereas the second trial was performed under an air atmosphere as a control. Two red wine grape varieties were studied, Barbera and Nebbiolo (Vitis vinifera L.), for their different phenolic composition. Berry skin flavanol composition was determined by high-performance liquid chromatography after phloroglucinolysis and size-exclusion chromatography. The results showed that dehydration and ozone effects were variety-dependent. In Barbera skins, being characterized by lower proanthocyanidin contents, the two effects were significant and their combination showed interesting advantages related to lower proanthocyanidin loss as well as higher prodelphinidin and lower galloylation percentages. In Nebbiolo, skin flavanol composition was barely affected.


Subject(s)
Flavanones/chemistry , Fruit/chemistry , Ozone/pharmacology , Phenols/chemistry , Vitis/drug effects , Wine/analysis , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Desiccation , Food Handling , Fruit/drug effects , Fruit/physiology , Molecular Structure , Stress, Physiological , Vitis/chemistry , Vitis/physiology
18.
Foods ; 9(6)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498461

ABSTRACT

BACKGROUND: To obtain wines with a lower percentage of alcohol, the simplest approach would be an earlier harvest of the grapes. However, this has implications for the wine composition and quality, due to the lack of phenolic maturity that these grapes may present. A technological innovation that could help in this situation could be the use of ultrasound in wineries. METHODS: Grapes were harvested with two different ripening levels (25.4 °Brix and 29 °Brix), transported to the winery, and vinified. Also, a large-scale high-power ultrasound system was used to treat part of the less mature grapes just after crushing. These grapes were also vinified. The three different vinifications were skin-macerated for 7 days. The wine aroma compounds and physicochemical, chromatic, and sensory characteristics were analyzed at the time of bottling. RESULTS: The wine made with the ultrasound-treated grapes showed very similar characteristics to the wine made with the more mature grapes, especially regarding total phenol and tannin content, but with an alcohol content 15% lower than the latter. CONCLUSIONS: The results indicate that this technology could be applied to grapes to favor the extraction of grape phenolic compounds, even when grape phenolic maturity is not complete, allowing the production of quality wines with a reduced alcohol content.

19.
Food Res Int ; 129: 108889, 2020 03.
Article in English | MEDLINE | ID: mdl-32036932

ABSTRACT

Tannins are present in grape skins and seeds from where they are transferred into the must-wine matrix during the maceration stages of winemaking. However, tannin transfer is often incomplete. This could be due, among other reasons, to tannins becoming bound to grape cell wall polysaccharides, including soluble polymers, which are released during vinification and are present in high concentrations in the must/wine. The use of cell wall deconstructing enzymes offers the possibility of reducing these interactions, releasing more tannins into the final wine. The main aim of this study was to evaluate the optimal addition (individually, in combination or sequentially) of hydrolytic enzymes that would prevent tight polysaccharide-tannin associations. The use of comprehensive microarray polymer profiling (CoMPP) methodology provided key insights into how the enzyme treatments impacted the grape cell wall matrix and tannin binding. The results demonstrated that polygalacturonase + pectin-lyase promoted the highest release of tannins into solution.


Subject(s)
Carbohydrates/chemistry , Cell Wall , Polysaccharides/chemistry , Tannins/chemistry , Vitis , Wine/analysis , Carbohydrate Metabolism , Enzymes/metabolism , Food Handling , Fruit/cytology
20.
Biomolecules ; 10(1)2019 12 25.
Article in English | MEDLINE | ID: mdl-31881777

ABSTRACT

The interactions between tannins and soluble and insoluble cell wall components are, in part, responsible for the low quantities of tannins found in wines compared with the quantities in grapes. The use of polysaccharides to compete with cell wall components could be an interesting approach for improving the chromatic and sensory characteristics of wines. The effect of two commercial polysaccharides, pectin and mannan, on limiting tannin-cell wall interactions was studied in a model solution, measuring the concentration of tannins and polysaccharides remaining in solution after the different interactions by chromatography. The treatment was also tested in a small-scale vinification. Soluble polysaccharides were added to the must and the wines were evaluated at the end of alcoholic fermentation and after six months in the bottle. In the model solution, the commercial polysaccharides formed soluble complexes with the tannins and limited the interactions with cell wall components, with some differences between skin and seed tannins. In the case of the wines, the treatments resulted in wines with a higher color intensity and phenolic content. Sensory analysis resulted in higher scores for the wines with added polysaccharides, since the complexation of tannins with the polysaccharides increased the roundness and body of the resulting wines.


Subject(s)
Cell Wall/chemistry , Polysaccharides/chemistry , Tannins/chemistry , Wine/analysis , Phenols/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...