Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 12(4): R40, 2011.
Article in English | MEDLINE | ID: mdl-21501500

ABSTRACT

BACKGROUND: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. RESULTS: Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. CONCLUSIONS: The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.


Subject(s)
Genome, Fungal/genetics , Pest Control, Biological , Sequence Analysis, DNA/methods , Trichoderma/genetics , Chromosome Mapping , DNA Transposable Elements/genetics , Hypocrea/classification , Hypocrea/genetics , Phylogeny , Plants/parasitology , Species Specificity , Trichoderma/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...