Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(36): 17930-17938, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37744964

ABSTRACT

Artificial nanostructuring of graphene has served as a platform to induce variations in its structural and electronic properties, fostering the experimental observation of a wide and fascinating phenomenology. Here, we present an approach to graphene tuning, based on Rh(110) surface reconstruction induced by oxygen atoms intercalation. The resulting nanostructured graphene has been characterized by scanning tunneling microscopy (STM) complemented by low-energy electron microscopy (LEEM), micro low-energy electron diffraction (µ-LEED), micro angle-resolved photoemission spectroscopy (µ-ARPES), and micro X-ray photoelectron spectroscopy (µ-XPS) measurements under ultrahigh vacuum (UHV) conditions at room temperature (RT). It is found that by fine-tuning the O2 exposure amount, a mixture of missing row surface reconstructions of the metal surface below the graphene layer can be induced. This atomic rearrangement under the graphene layer results in aperiodic patterning of the two-dimensional (2D) material. The electronic structure of the resulting nanostructured graphene is dominated by a linear dispersion of the Dirac quasiparticles, characteristic of its free-standing state but with a p-doping character. The local effects of the underlying missing rows on the interfacial chemistry and on the quasiparticle scattering processes in graphene are studied using atomically resolved STM images. The possibilities offered by this nanostructuring approach, which consists in inducing surface reconstructions under graphene, could provide a novel tuning strategy for this 2D material.

2.
Nanoscale ; 15(10): 5083-5091, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36808204

ABSTRACT

The on-surface formation of iso-oriented 1D molecular architectures, with high structural perfection, on 2D materials has been a long-sought objective. However, such realization has been troublesome and limited, and it still remains an experimental challenge. Here, the quasi-1D stripe-like moiré pattern, arising at the interface of graphene grown on Rh(110), has been used to guide the formation of 1D molecular wires of π-conjugated, non-planar, chloro-aluminum phthalocyanine (ClAlPc) molecules, brought together by van der Waals interactions. Using scanning tunnelling microscopy (STM) under ultra-high vacuum (UHV) at 40 K, the preferential adsorption orientations of the molecules at low coverages have been investigated. The results shed light on the potential signature of graphene lattice symmetry breaking, induced by the incommensurate quasi-1D moiré pattern of Gr/Rh(110), as the subtle mechanism behind this templated growth of 1D molecular structures. For coverages close to 1 ML, the molecule-molecule interactions favor a closely packed square lattice arrangement. The present work provides new insights to tailor 1D molecular structures on graphene grown on a non-hexagonal metal substrate.

3.
Small ; 19(17): e2207217, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36710252

ABSTRACT

In-plane heterostructures of graphene and hexagonal boron nitride (h-BN) exhibit exceptional properties, which are highly sensitive to the structure of the alternating domains. Nevertheless, achieving accurate control over their structural properties, while keeping a high perfection at the graphene-h-BN boundaries, still remains a challenge. Here, the growth of lateral heterostructures of graphene and h-BN on Rh(110) surfaces is reported. The choice of the 2D material, grown firstly, determines the structural properties of the whole heterostructure layer, allowing to have control over the rotational order of the domains. The atomic-scale observation of the boundaries demonstrates a perfect lateral matching. In-plane heterostructures floating over an oxygen layer have been successfully obtained, enabling to observe intervalley scattering processes in graphene regions. The high tuning capabilities of these heterostructures, along with their good structural quality, even around the boundaries, suggest their usage as test beds for fundamental studies aiming at the development of novel nanomaterials with tailored properties.

4.
Nanotechnology ; 32(2): 025711, 2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33073772

ABSTRACT

A deep grasp of the properties of the interface between organic molecules and hexagonal boron nitride (h-BN) is essential for the full implementation of these two building blocks in the next generation of electronic devices. Here, using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we report on the geometric and electronic features of C60 evaporated on a single layer of h-BN grown on a Rh(110) surface under ultra-high vacuum. Two different molecular assemblies of C60 on the h-BN/Rh(110) surface were observed. The first STM study at room temperature (RT) and at low temperatures (40 K) looked at the molecular orientation of C60 on a two-dimensional layered material. Intramolecular-resolution images demonstrate the existence of a phase transition of C60 over the h-BN/Rh(110) surface similar to that found on bulk solid C60. At RT molecules exhibit random orientations, while at 40 K such rotational disorder vanishes and they adopt a common orientation over the h-BN/Rh(110) surface. The decrease in thermal energy allows recognition between C60 molecules, and they become equally oriented in the configuration at which the van der Waals intermolecular interactions are optimized. Bias-dependent submolecular features obtained by means of high-resolution STM images are interpreted as the highest occupied and lowest unoccupied molecular orbitals. STS data showed that fullerenes are electronically decoupled from the substrate, with a negligible charge transfer effect if any. Finally, the very early stages of multilayer growth were also investigated.

5.
Nanoscale ; 11(5): 2317-2325, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30662984

ABSTRACT

A 2D material consisting of a pseudo-ordered distribution of Ir nanocrystals supported on a h-BN/Rh(111) surface is presented here. The particular spatial distribution of the Ir nanoparticles is achieved thanks to the existence of a large variety of adsorption positions within the pores of the h-BN/Rh(111) nanomesh template with hexagonal symmetry. The resulting deviations of nanoparticle positions with respect to a perfect hexagonal lattice, which make this material of special interest in the field of optics, can be tuned by the temperature and the amount of Ir. Upon annealing, this material undergoes slight structural changes in the temperature range of 370-570 K and much more drastic ones, due to cluster coalescence, between 670 and 770 K. This relatively high onset of coalescence is encouraging for using this 2D material as a catalyst for reactions such as the oxidation of carbon monoxide or of nitrogen monoxide, which are especially relevant in the field of environmental science. Finally, metal nanostructures exhibiting regular geometries have been created from this material using a scanning tunneling microscope tip. Because of the insulating character of h-BN, these nanostructures could be very promising to use in the design of conductive nanotracks.

6.
Phys Chem Chem Phys ; 20(29): 19492-19499, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29998270

ABSTRACT

Graphene is commonly regarded as an inert material. However, it is well known that the presence of defects or substitutional hetero-atoms confers graphene promising catalytic properties. In this work, we use first-principles calculations to show that it is also possible to enhance the chemical reactivity of a graphene layer by simply growing it on an appropriate substrate. Our comprehensive study demonstrates that, in strongly interacting substrates like Rh(111), graphene adopts highly rippled structures that exhibit areas with distinctive chemical behaviors. According to the local coupling with the substrate, we find areas with markedly different adsorption, dissociation and diffusion pathways for both molecular and atomic oxygen, including a significant change in the nature of the adsorbed molecular and dissociated states, and a dramatic reduction (∼60%) of the O2 dissociation energy barrier with respect to free-standing graphene. Our results show that the graphene-metal interaction represents an additional and powerful handle to tailor the graphene chemical properties with potential applications to nano patterning, graphene functionalization and sensing devices.

7.
Phys Chem Chem Phys ; 20(19): 13370-13378, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29721570

ABSTRACT

The atomistic mechanisms involved in the oxygen (O) intercalation in the strongly interacting graphene (G) on Rh(111) system are characterized in a comprehensive experimental and theoretical study, combining scanning tunneling microscopy and density functional theory (DFT) calculations. Experimental evidence points out that the G areas located just above the metallic steps of the substrate are the active sites for initializing the intercalation process when some micro-etching points appear after molecular oxygen gas exposure. These regions are responsible for both the dissociation of the oxygen molecules and the subsequent penetration to the G-metal interface. Unlike in other species, the DFT calculations exclude single-point defects as additional entry paths to the interface. After penetration, the intercalation proceeds inwards due to the high mobility of atomic oxygen at the interface following mid-height paths connecting the higher areas of the rippled graphene structure. At larger coverages, the accumulation of O atoms under the high areas increases the G-metal distance in the neighboring low areas, paving the way for the O incorporation and the G detachment that leads to the final O-(2 × 1) structure. Furthermore, our results show that these mechanisms are possible only at temperatures slightly lower than those in which graphene etching takes place.

8.
Nat Commun ; 7: 13076, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708263

ABSTRACT

Carbon and silicon pentagonal low-dimensional structures attract a great interest as they may lead to new exotic phenomena such as topologically protected phases or increased spin-orbit effects. However, no pure pentagonal phase has yet been realized for any of them. Here we unveil through extensive density functional theory calculations and scanning tunnelling microscope simulations, confronted to key experimental facts, the hidden pentagonal nature of single- and double-strand chiral Si nano-ribbons perfectly aligned on Ag(110) surfaces whose structure has remained elusive for over a decade. Our study reveals an unprecedented one-dimensional Si atomic arrangement solely comprising almost perfect alternating pentagons residing in the missing row troughs of the reconstructed surface. We additionally characterize the precursor structure of the nano-ribbons, which consists of a Si cluster (nano-dot) occupying a silver di-vacancy in a quasi-hexagonal configuration. The system thus materializes a paradigmatic shift from a silicene-like packing to a pentagonal one.

9.
Nanoscale ; 8(40): 17686-17693, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27722743

ABSTRACT

Nitrogen doping of graphene can be an efficient way of tuning its pristine electronic properties. Several techniques have been used to introduce nitrogen atoms on graphene layers. The main problem in most of them is the formation of a variety of C-N species that produce different electronic and structural changes on the 2D layer. Here we report on a method to obtain purely substitutional nitrogen on graphene on Pt(111) surfaces. A detailed experimental study performed in situ, under ultra-high vacuum conditions with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) of the different steps on the preparation of the sample, has allowed us to gain insight into the optimal parameters for this growth method, that combines ion bombardment and annealing. This experimental work is complemented by first-principles calculations and STM simulations that provide the variation of the projected density of states due to both the metallic substrate and the nitrogen atoms. These calculations enlighten the experimental findings and prove that the species found are graphitic nitrogen. This easy and effective technique leads to the possibility of playing with the amount of dopants and the metallic substrate to obtain the desired doping of the graphene layer.

10.
ACS Nano ; 10(5): 5131-44, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27110642

ABSTRACT

The local interaction between graphene and a host substrate strongly determines the actual properties of the graphene layer. Here we show that scanning tunneling microscopy (STM) can selectively help to visualize either the graphene layer or the substrate underneath, or even both at the same time, providing a comprehensive picture of this coupling with atomic precision and high energy resolution. We demonstrate this for graphene on Cu(111). Our spectroscopic data show that, in the vicinity of the Fermi level, graphene π bands are well preserved presenting a small n-doping induced by Cu(111) surface state electrons. Such results are corroborated by Angle-Resolved Photoemission Spectra (ARPES) and Density Functional Theory with van der Waals (DFT + vdW) calculations. Graphene tunable transparency also allows the investigation of the interaction between the substrate and foreign species (such as atomic H or C vacancies) on the graphene layer. Our calculations explain graphene tunable transparency in terms of the rather different decay lengths of the graphene Dirac π states and the metal surface state, suggesting that it should apply to a good number of graphene/substrate systems.

11.
Science ; 352(6284): 437-41, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102478

ABSTRACT

Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions.

12.
Bioinformatics ; 31(17): 2918-20, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25931516

ABSTRACT

UNLABELLED: Scanning probe microscopy (SPM) is already a relevant tool in biological research at the nanoscale. We present 'Flatten plus', a recent and helpful implementation in the well-known WSxM free software package. 'Flatten plus' allows reducing low-frequency noise in SPM images in a semi-automated way preventing the appearance of typical artifacts associated with such filters. AVAILABILITY AND IMPLEMENTATION: WSxM is a free software implemented in C++ supported on MS Windows, but it can also be run under Mac or Linux using emulators such as Wine or Parallels. WSxM can be downloaded from http://www.wsxmsolutions.com/. CONTACT: ignacio.horcas@wsxmsolutions.com.


Subject(s)
Biomedical Research , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Scanning Probe/methods , Software , Algorithms , Cell Cycle Proteins/ultrastructure , Chromosomal Proteins, Non-Histone/ultrastructure , DNA/ultrastructure , Humans , Image Enhancement
13.
Chem Commun (Camb) ; 48(54): 6779-81, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22555383

ABSTRACT

The reaction between 1,3,5-tris(4-hydroxyphenyl)benzene and benzene-1,3,5-tricarbonyl trichloride leads to polyester condensation and formation of a novel COF on an Au(111) surface. The characterization performed in situ by means of variable temperature STM and XPS reveals the formation of an array of hexagonal cavities with ca. 2 nm size.

14.
Nano Lett ; 11(9): 3576-80, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21823598

ABSTRACT

A novel technique for growing graphene on relatively inert metals, consisting in the thermal decomposition of low energy ethylene ions irradiated on hot metal surfaces in ultrahigh vacuum, is reported. By this route, we have grown graphene monolayers on Cu(111) and, for the first time, on Au(111) surfaces. For both noble metal substrates, but particularly for Au(111), our scanning tunneling microscopy and spectroscopy measurements provide sound evidence of a very weak graphene-metal interaction.

15.
Phys Rev Lett ; 94(5): 056103, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783664

ABSTRACT

We present a very efficient and accurate method to simulate scanning tunneling microscopy images and spectra from first-principles density functional calculations. The wave functions of the tip and sample are calculated separately on the same footing and propagated far from the surface using the vacuum Green function. This allows us to express the Bardeen matrix elements in terms of convolutions and to obtain the tunneling current at all tip positions and bias voltages in a single calculation. The efficiency of the method opens the door to real time determination of both tip and surface composition and structure, by comparing experiments to simulated images for a variety of precomputed tips. Comparison with the experimental topography and spectra of the Si111-(7 x 7) surface shows a much better agreement with Si than with W tips, implying that the metallic tip is terminated by silicon.

SELECTION OF CITATIONS
SEARCH DETAIL
...