Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475354

ABSTRACT

Bipolar plates (BPs) are one of the most important components of polymer electrolyte membrane fuel cells (PEMFCs) because of their important role in gas and water management, electrical performance, and mechanical stability. Therefore, promising materials for use as BPs should meet several technical targets established by the United States Department of Energy (DOE). Thus far, in the literature, many materials have been reported for possible applications in BPs. Of these, polymer composites reinforced with carbon allotropes are one of the most prominent. Therefore, in this review article, we present the progress and critical analysis on the use of carbon material-reinforced polymer composites as BPs materials in PEMFCs. Based on this review, it is observed that numerous polymer composites reinforced with carbon allotropes have been produced in the literature, and most of the composites synthesized and characterized for their possible application in BPs meet the DOE requirements. However, these composites can still be improved before their use for BPs in PEMFCs.

2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447512

ABSTRACT

Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.

3.
J Biomed Mater Res A ; 110(2): 266-272, 2022 02.
Article in English | MEDLINE | ID: mdl-34331513

ABSTRACT

Considerable attention has been given to the use of chitosan (CS)-based materials reinforced with inorganic bioactive signals such as hydroxyapatite (HA) to treat bone defects and tissue loss. It is well known that CS/HA based materials possess minimal foreign body reactions, good biocompatibility, controlled biodegradability and antibacterial property. Herein, the bioactivity of these composite systems was analyzed on in vitro bone cell models for their applications in the field of bone tissue engineering (BTE). The combination of sol-gel approach and freeze-drying technology was used to obtain CS/HA scaffolds with three-dimensional (3D) porous structure suitable for cell in-growth. Specifically, our aim was to investigate the influence of bioactive composite scaffolds on cellular behavior in terms of osteoinductivity and anti-inflammatory effects for treating bone defects. The results obtained have demonstrated that by increasing inorganic component concentration, CS/HA (60 and 70% v/v) scaffolds induced a good biological response in terms of osteogenic differentiation of human mesenchymal stem cells (hMSC) towards osteoblast phenotype. Furthermore, the scaffolds with higher concentration of inorganic fillers are able to modulate the production of pro-inflammatory (TGF-ß) and anti-inflammatory (IL-4, IL-10) cytokines. Our results highlight the possibility of achieving smart CS/HA based composites able to promote a great osteogenic differentiation of hMSC by increasing the amount of HA nanoparticles used as bioactive inorganic signal. Contemporarily, these materials allow avoiding the induction of a pro-inflammatory response in bone implant site.


Subject(s)
Chitosan , Nanocomposites , Biocompatible Materials/chemistry , Bone Regeneration , Chitosan/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Nanocomposites/chemistry , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry
4.
Polymers (Basel) ; 12(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882974

ABSTRACT

The aim of this work is to structurally characterize chitosan-zinc oxide nanoparticles (CS-ZnO NPs) films in a wide range of NPs concentration (0-20 wt.%). Dielectric, conductivity, mechanical, and piezoelectric properties are assessed by using thermogravimetry, FTIR, XRD, mechanical, and dielectric spectroscopy measurements. These analyses reveal that the dielectric constant, Young's modulus, and piezoelectric constant (d33) exhibit a strong dependence on nanoparticle concentration such that maximum values of referred properties are obtained at 15 wt.% of ZnO NPs. The piezoelectric coefficient d33 in CS-ZnO nanocomposite films with 15 wt.% of NPs (d33 = 65.9 pC/N) is higher than most of polymer-ZnO nanocomposites because of the synergistic effect of piezoelectricity of NPs, elastic properties of CS, and optimum NPs concentration. A three-phase model is used to include the chitosan matrix, ZnO NPs, and interfacial layer with dielectric constant higher than that of neat chitosan and ZnO. This layer between nanoparticles and matrix is due to strong interactions between chitosan's side groups with ZnO NPs. The understanding of nanoscale properties of CS-ZnO nanocomposites is important in the development of biocompatible sensors, actuators, nanogenerators for flexible electronics and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...